
A graph G has a finite set V of points and a set X of lines each of which joins two distinct points (called its end-points), and no two lines join the same pair of points. A graph with one point and no line is trivial. A line is incident with each of its end-points. Two points are adjacent if they are joined by a line. The degree of a point is the number of lines incident with it. The line-graph L(G) of G has X as its set of points and two elements x, y of X are adjacent in L(G) whenever the lines x and y of G have a common end-point. A walk in G is an alternating sequence v1, x1, v2, x2, …, vn of points and lines, the first and last terms being points, such that xi is the line joining vi to vi+1 for i=1, …, n-1.
topology
topology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 262 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
