Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://homepage.cs.u...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://homepage.cs.uri.edu/fac...
Part of book or chapter of book
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://homepage.cs.uri.edu/fac...
Part of book or chapter of book
Data sources: UnpayWall
https://doi.org/10.4018/978-1-...
Part of book or chapter of book . 2009 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.4018/978160...
Part of book or chapter of book . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Model Assessment with ROC Curves

Authors: Lutz Hamel;

Model Assessment with ROC Curves

Abstract

Classification models and in particular binary classification models are ubiquitous in many branches of science and business. Consider, for example, classification models in bioinformatics that classify catalytic protein structures as being in an active or inactive conformation. As an example from the field of medical informatics we might consider a classification model that, given the parameters of a tumor, will classify it as malignant or benign. Finally, a classification model in a bank might be used to tell the difference between a legal and a fraudulent transaction. Central to constructing, deploying, and using classification models is the question of model performance assessment (Hastie, Tibshirani, & Friedman, 2001). Traditionally this is accomplished by using metrics derived from the confusion matrix or contingency table. However, it has been recognized that (a) a scalar is a poor summary for the performance of a model in particular when deploying non-parametric models such as artificial neural networks or decision trees (Provost, Fawcett, & Kohavi, 1998) and (b) some performance metrics derived from the confusion matrix are sensitive to data anomalies such as class skew (Fawcett & Flach, 2005). Recently it has been observed that Receiver Operating Characteristic (ROC) curves visually convey the same information as the confusion matrix in a much more intuitive and robust fashion (Swets, Dawes, & Monahan, 2000). Here we take a look at model performance metrics derived from the confusion matrix. We highlight their shortcomings and illustrate how ROC curves can be deployed for model assessment in order to provide a much deeper and perhaps more intuitive analysis of the models. We also briefly address the problem of model selection.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Top 10%
Top 10%
Average