publication . Article . 2018

The Collaborative Seismic Earth Model : Generation 1

Fichtner, Andreas; van Herwaarden, Dirk-Philip; Afanasiev, Michael; Simutė, Saulė; Krischer, Lion; Çubuk-Sabuncu, Yeşim; Taymaz, Tuncay; Colli, Lorenzo; Saygin, Erdinc; Villaseñor, Antonio; ...
Open Access English
  • Published: 16 May 2018 Journal: Geophysical Research Letters, volume 45, issue 9, page 4,007 (issn: 0094-8276, Copyright policy)
Abstract
We present a general concept for evolutionary, collaborative, multiscale inversion of geophysical data, specifically applied to the construction of a first-generation Collaborative Seismic Earth Model. This is intended to address the limited resources of individual researchers and the often limited use of previously accumulated knowledge. Model evolution rests on a Bayesian updating scheme, simplified into a deterministic method that honors today's computational restrictions. The scheme is able to harness distributed human and computing power. It furthermore handles conflicting updates, as well as variable parameterizations of different model refinements or diff...
Subjects
free text keywords: computational geophysics, Earth structure, inverse theory, seismology, tomography, wave propagation, Geophysics, Earth and Planetary Sciences(all), [SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph], inverse theory; seismology; wave propagation; tomography; Earth structure; computational geophysics, Solid Earth, Modeling, Informatics, Oceanography: General, Numerical Modeling, Natural Hazards, Geological, Physical Modeling, Radio Science, Tomography and Imaging, Theory, Volcano Seismology, Tectonophysics, Volcanology, Volcano Monitoring, General or Miscellaneous, Techniques Applicable in Three or More Fields, Research Letter, Research Letters, General Earth and Planetary Sciences, Earth structure, engineering.material, engineering, Bayesian inference, Earth model, Deterministic method, Limited resources, Computer science, Inversion (meteorology), Computational geophysics, Ranging, Distributed computing
Communities
  • EPOS
  • Social Science and Humanities
Funded by
EC| EPOS IP
Project
EPOS IP
EPOS Implementation Phase
  • Funder: European Commission (EC)
  • Project Code: 676564
  • Funding stream: H2020 | RIA
Validated by funder
,
EC| CSEM
Project
CSEM
The Collaborative Seismic Earth Model Project
  • Funder: European Commission (EC)
  • Project Code: 714069
  • Funding stream: H2020 | ERC | ERC-STG
Validated by funder
59 references, page 1 of 4

Afanasiev, M. V., Peter, D. B., Sager, K., Simute, S., Ermert, L., Krischer, L., & Fichtner, A. (2016). Foundations for a multiscale co llaborative Earth model. Geophysical Journal International, 204, 39–58.

Backus, G. E. (1962). Long‐wave elastic anisotropy produced by horizontal layering. Journal of Geophysical Research, 67, 4427–4440.

Bijwaard, H., Spakman, W., & Engdahl, E. R. (1998). Closing the gap between regional and global traveltime tomography. Journal of Geophysical Research, 103, 30,055–30,078.

Blom, N., Boehm, C., & Fichtner, A. (2017). Synthetic inversions for density using seismic and gravity data. Geophysical Journal International, 209, 1204–1220. [OpenAIRE]

Bozdağ, E., Peter, D., Lefebvre, M., Komatitsch, D., Tromp, J., Hill, J., et al. (2016). Global adjoint tomography: First‐generation model. Geophysical Journal International, 207, 1739–1766.

Bozdağ, E., & Trampert, J. (2008). On crustal corrections in surface wave tomography. Geophysical Journal International, 172, 1066–1082.

Bui‐Thanh, T., Ghattas, O., Martin, J., & Stadler, G. (2013). A computational framework for infinite‐dimensional Bayesian inverse problems part I: The linearized case, with a pplication to global seismic inversion. SIAM Journal of Scientific Computing, 35, A2494–A2523.

Bunge, H.‐P., Hagelberg, C. R., & Travis, B. J. (2003). Mantle circulation models with variational data assimilation: Inferring past mantle flow and structure from plate motion histories and seismic tomography. Geophysical Journal International, 152, 280–301.

Capdeville, Y., Stutzmann, E., Montagner, J.‐P., & Wang, N. (2013). Residual homogenization for seismic forward and inverse problems in layered media. Geophysical Journal International, 194, 470–487.

Chen, P., Zhao, L., & Jordan, T. H. (2007). Full 3D tomography for the crustal structure of the Los Angeles region. Bulletin of the Seismological Society of America, 97, 1094–1120.

Chulliat, A., Matzka, J., Masson, A., & Milan, S. E. (2017). Key ground‐based and space‐based assets to disentangle magnetic field sources in the Earth's environment. Space Science Reviews, 206, 123–156.

Colli, L., Fichtner, A., & Bunge, H.‐P. (2013). Full waveform tomography of the upper mantle in the South Atlantic region: Imaging westward fluxing shallow asthenosphere? Tectonophysics, 604, 26–40.

Colli, L., Ghelichkhan, S., & Bunge, H.‐P. (2017). Retrodictions of Mid Paleogene mantle flow and dynamic topography in the Atlantic region from compressible high resolution adjoint mantle convection models: Sensitivity to deep mantle viscosity and tomographic input model. Gondwana Research, 53, 252–272. 10.1016/j.gr.2017.04.027 [OpenAIRE] [DOI]

Çubuk Sabuncu, Y., Taymaz, T., & Fichtner, A. (2017). 3‐D crustal velocity structure of western Turkey: Constraints from full‐waveform tomography. Physics of the Earth and Planetary Interiors, 270, 90–112.

Dalton, C. A., Ekström, G., & Dziewonski, A. M. (2008). The global attenuation structure of the upper mantle. Journal of Geophysical Research, 113, B09303 10.1 029/2007JB005429 [DOI]

59 references, page 1 of 4
Any information missing or wrong?Report an Issue