
handle: 1721.1/108568
ABSTRACT GJ 1132b is a nearby Earth-sized exoplanet transiting an M dwarf, and is among the most highly characterizable small exoplanets currently known. In this paper, we study the interaction of a magma ocean with a water-rich atmosphere on GJ 1132b and determine that it must have begun with more than 5 wt% initial water in order to still retain a water-based atmosphere. We also determine the amount of O2 that can build up in the atmosphere as a result of hydrogen dissociation and loss. We find that the magma ocean absorbs at most ∼10% of the O2 produced, whereas more than 90% is lost to space through hydrodynamic drag. The most common outcome for GJ 1132b from our simulations is a tenuous atmosphere dominated by O2, though, for very large initial water abundances, atmospheres with several thousands of bars of O2 are possible. A substantial steam envelope would indicate either the existence of an earlier H2 envelope or low XUV flux over the system’s lifetime. A steam atmosphere would also imply the continued existence of a magma ocean on GJ 1132b. Further modeling is needed to study the evolution of CO2 or N2-rich atmospheres on GJ 1132b.
Earth and Planetary Astrophysics (astro-ph.EP), 550, Space and Planetary Science, FOS: Physical sciences, Astronomy and Astrophysics, Astrophysics - Earth and Planetary Astrophysics
Earth and Planetary Astrophysics (astro-ph.EP), 550, Space and Planetary Science, FOS: Physical sciences, Astronomy and Astrophysics, Astrophysics - Earth and Planetary Astrophysics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 134 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
