• shareshare
  • link
  • cite
  • add
auto_awesome_motion View all 2 versions
Publication . Article . 2020

Enhancing the secrecy of a cryptographic key generated using synchronized artificial neural networks1

M. L. Radziukevich; V. F. Golikov;
Open Access  
Published: 01 Mar 2020 Journal: Informatics, volume 17, pages 102-108 (issn: 1816-0301, eissn: 2617-6963, Copyright policy )
Publisher: United Institute of Informatics Problems of the National Academy of Sciences of Belarus
The main options for the formation of a shared secret using synchronized artificial neural networks and possible patterns of behavior of a cryptanalyst are considered. To solve the problem of increasing the confidentiality of the generated shared secret, if it is used as a cryptographic key, it is proposed to use the mixing a certain number of results of individual synchronizations (convolution). As a mixing function, we consider the convolution of the vectors of network weights by bitwise addition modulo 2 of all the results of individual synchronizations. It is shown that the probability of success of a cryptanalyst is reduced exponentially with an increase of the number of terms in the convolution and can be chosen arbitrarily small. Moreover, the distribution law of the generated key after convolution is close to uniform and the uniformity increases with the number of terms in the convolution.
Subjects by Vocabulary

Microsoft Academic Graph classification: Key (cryptography) Shared secret Algorithm Modulo Artificial neural network Mixing (physics) Function (mathematics) Convolution Computer science Bitwise operation

arXiv: Computer Science::Cryptography and Security


synchronized artificial neural networks, shared secret, cryptographic key, compression function, cryptanalysis, Electronic computers. Computer science, QA75.5-76.95

Related Organizations
Download fromView all 3 sources
License: cc-by
Providers: UnpayWall