<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Comprehensive experimental investigations were carried out on density (ρ), viscosity (η), and ultrasonic velocity (u) for binary mixtures comprising Anisole and 2-Butoxyethanol within the temperature range of 303.15K to 318.15K, covering the complete range of mole fractions. These parameters were measured at intervals of 5K. Derived excess parameters, including acoustic impedance (ZE), intermolecular free length (LEf), molar volume (VEm), excess ultrasonic velocity (uE), and excess viscosity (ηE), were calculated to probe the molecular interactions present in the mixture. These excess parameters were correlated with temperature and mole fraction, revealing the complexity and nature of intermolecular interactions. Notably, the Arrhenius, Bingham, Eyring, Grunberg, Kurata, Nissan, and Tamura models were utilized to theoretically validate the acquired empirical data. This study aims to offer invaluable insights into the thermodynamics and molecular dynamics that govern these binary liquid mixtures.
Viscosity, Density, Ultrasonic Velocity, Excess Parameters, Molecular Interaction
Viscosity, Density, Ultrasonic Velocity, Excess Parameters, Molecular Interaction
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |