Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
2021
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

hand side recognition and authentication system based on deep convolutional neural networks

Authors: Mohammad Abbadi; Afaf Tareef; Afnan Sarayreh;

hand side recognition and authentication system based on deep convolutional neural networks

Abstract

The human hand has been considered a promising component for biometric-based identification and authentication systems for many decades. In this paper, hand side recognition framework is proposed based on deep learning and biometric authentication using the hashing method. The proposed approach performs in three phases: (a) hand image segmentation and enhancement by morphological filtering, automatic thresholding, and active contour deformation, (b) hand side recognition based on deep Convolutional Neural Networks (CNN), and (c) biometric authentication based on the hashing method. The proposed framework is evaluated using a very large hand dataset, which consists of 11076 hand images, including left/ right and dorsal/ palm hand images for 190 persons. Finally, the experimental results show the efficiency of the proposed framework in both dorsal-palm and left-right recognition with an average accuracy of 96.24 and 98.26, respectively, using a completely automated computer program.

Related Organizations
Keywords

Hand side recognition, biometric authentication, Deep learning, Automatic ROI segmentation, Convolutional neural networks, Hashing function.

Powered by OpenAIRE graph
Found an issue? Give us feedback