Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2020
License: CC BY
Data sources: ZENODO
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Novel Segmentation Techniques for Red Blood Cells using Clustering Algorithms

Authors: M. Sivasubramanian; Parasuraman Kumar; M. Sivajothi;

A Novel Segmentation Techniques for Red Blood Cells using Clustering Algorithms

Abstract

RBC called Erythrocytes is one of the important element in blood composition which is main responsible in all living cells for its gaseous exchanges with the environment externally. In general, at the physiological maintained conditions, RBC in view provides circular in the front and also looks bi-concave at side. One of serious disease with reference to blood cells is Cancer where the healthy RBC are affected. This reduces the body's immunity factors. To identify the cancer cell various methods are employed but it does not provide the proper detection of blood cells. In this method, proper identification of the cancer cells from the unaffected RBCs was identified in which are presented in blood samples using various imaging tools and also with the techniques. The proposed novel method called Online Region Based Segmentation (ORBS) method is done which is used to discover the areas of the boundary of the unaffected corpuscles. By using properties of region, a suitable metric is formulated to determine the shape which is abnormal in the blood cells. Overall accuracy of 96.9% is obtained using proposed ORBS methods and deep learning classification (DLC) method is accurate as 97.1% that helps to diagnose cancer cell using the feature extraction process which is done automatically. The computation time was found to be less when related to the other existing method which is 22 seconds. Closeness of Proposed method in relative to True Positive values at ROC curves indicates the performance which is higher than other methods. Experimental results prove proposed systems effectiveness when compared by means of other detection methods.

Subjects by Vocabulary

Microsoft Academic Graph classification: business.industry Computer science Pattern recognition Segmentation Artificial intelligence Cluster analysis business

Keywords

Environmental Engineering, Red Blood Corpuscle(RBC); Proposed Online Region Based Segmentation; Deep learning based classifier., General Engineering, 2249-8958, C5901029320/2020©BEIESP, Computer Science Applications

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 49
    download downloads 31
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
  • 49
    views
    31
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
49
31
Related to Research communities
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.