publication . Article . Other literature type . 2019

Lignocellulosic ethanol biorefinery: Valorization of lignin-rich stream through hydrothermal liquefaction

Miliotti, Edoardo; Dell' Orco, Stefano; Lotti, Giulia; Rizzo, Andrea Maria; Rosi, Luca; Chiaramonti, David;
Open Access English
  • Published: 22 Feb 2019
  • Country: Italy
C, while at 350 and 370 &deg
Persistent Identifiers
free text keywords: Biocrude; Biorefinery; Depolymerization; Hydrothermal liquefaction; Lignin; Renewable Energy, Sustainability and the Environment; Energy Engineering and Power Technology; Energy (miscellaneous); Control and Optimization; Electrical and Electronic Engineering, Biocrude; Biorefinery; Depolymerization; Hydrothermal liquefaction; Lignin; Renewable Energy; Sustainability and the Environment; Energy Engineering and Power Technology; Energy (miscellaneous); Control and Optimization; Electrical and Electronic Engineering, lignin, biorefinery, hydrothermal liquefaction, biocrude, depolymerization, lignin; biorefinery; hydrothermal liquefaction; biocrude; depolymerization, Energy (miscellaneous), Energy Engineering and Power Technology, Renewable Energy, Sustainability and the Environment, Electrical and Electronic Engineering, Control and Optimization, Engineering (miscellaneous), lcsh:Technology, lcsh:T, Chemistry, Pulp and paper industry, Biorefinery, Hydrothermal liquefaction, Hydrolysis, Depolymerization, Carbon, chemistry.chemical_element, Factorial experiment, Lignin, chemistry.chemical_compound, Raw material
Communities with gateway
OpenAIRE Connect image
Funded by
EC| Heat-To-Fuel
Biorefinery combining HTL and FT to convert wet and solid organic, industrial wastes into 2nd generation biofuels with highest efficiency
  • Funder: European Commission (EC)
  • Project Code: 764675
  • Funding stream: H2020 | RIA
Validated by funder
Download fromView all 8 versions
Open Access
Article . 2019
Provider: Datacite
Open Access
Provider: UnpayWall
Open Access
Article . 2019
Provider: Crossref
52 references, page 1 of 4

1. European Parliament Directive 2015/1513 of the European Parliament and of the Council of 9 September 2015 amending Directive 98/70/EC relating to the quality of petrol and diesel fuels and amending Directive 2009/28/EC on the promotion of the use of energy from renewable sou. Off. J. Eur. Union 2015, L239, 1-29.

2. Bioenergy 2020+ GmbH IEA Task 39 Demo Plant Database. Available online: https://demoplants. (accessed on 12 December 2018).

3. Balan, V.; Chiaramonti, D.; Kumar, S. Review of US and EU initiatives toward development, demonstration, and commercialization of lignocellulosic biofuels. Biofuels Bioprod. Biorefining 2013, 7, 732-759. [CrossRef]

4. Farag, S.; Chaouki, J. Economics evaluation for on-site pyrolysis of kraft lignin to value-added chemicals. Bioresour. Technol. 2015, 175, 254-261. [CrossRef]

5. Obydenkova, S.V.; Kouris, P.D.; Hensen, E.J.M.; Heeres, H.J.; Boot, M.D. Environmental economics of lignin derived transport fuels. Bioresour. Technol. 2017, 243, 589-599. [CrossRef] [OpenAIRE]

6. Porzio, G.F.; Prussi, M.; Chiaramonti, D.; Pari, L. Modelling lignocellulosic bioethanol from poplar: Estimation of the level of process integration, yield and potential for co-products. J. Clean. Prod. 2012, 34, 66-75. [CrossRef]

7. Xu, C.; Arancon, R.A.D.; Labidi, J.; Luque, R. Lignin depolymerisation strategies: Towards valuable chemicals and fuels. Chem. Soc. Rev. 2014, 43, 7485-7500. [CrossRef]

8. Cao, L.; Zhang, C.; Chen, H.; Tsang, D.C.W.; Luo, G.; Zhang, S.; Chen, J. Hydrothermal liquefaction of agricultural and forestry wastes: State-of-the-art review and future prospects. Bioresour. Technol. 2017, 245, 1184-1193. [CrossRef]

9. Castello, D.; Pedersen, T.; Rosendahl, L. Continuous Hydrothermal Liquefaction of Biomass: A Critical Review. Energies 2018, 11, 3165. [CrossRef]

10. Barbier, J.; Charon, N.; Dupassieux, N.; Loppinet-Serani, A.; Mahé, L.; Ponthus, J.; Courtiade, M.; Ducrozet, A.; Quoineaud, A.A.; Cansell, F. Hydrothermal conversion of lignin compounds. A detailed study of fragmentation and condensation reaction pathways. Biomass Bioenergy 2012, 46, 479-491. [CrossRef]

11. Wahyudiono; Kanetake, T.; Sasaki, M.; Goto, M. Decomposition of a lignin model compound under hydrothermal conditions. Chem. Eng. Technol. 2007, 30, 1113-1122. [CrossRef] [OpenAIRE]

12. Zhang, B.; Huang, H.-J.; Ramaswamy, S. Reaction kinetics of the hydrothermal treatment of lignin. Appl. Biochem. Biotechnol. 2008, 147, 119-131. [CrossRef]

13. Nguyen, T.D.H.; Maschietti, M.; Åmand, L.E.; Vamling, L.; Olausson, L.; Andersson, S.I.; Theliander, H. The effect of temperature on the catalytic conversion of Kraft lignin using near-critical water. Bioresour. Technol. 2014, 170, 196-203. [CrossRef]

14. Pin´ kowska, H.; Wolak, P.; Złocin´ ska, A. Hydrothermal decomposition of alkali lignin in sub- and supercritical water. Chem. Eng. J. 2012, 187, 410-414. [CrossRef] [OpenAIRE]

15. Saisu, M.; Sato, T.; Watanabe, M.; Adschiri, T.; Arai, K. Conversion of Lignin with Supercritical Water-Phenol Mixtures. Energy Fuels 2003, 17, 922-928. [CrossRef]

52 references, page 1 of 4
Any information missing or wrong?Report an Issue