Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODO; Applied Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO; Applied Sciences
Other literature type . Article . 2021 . 2020 . Peer-reviewed
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DOAJ
Article . 2020
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Applied Sciences
Article . 2021
Data sources: DOAJ-Articles
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Review on the Importance of Microbial Biopolymers Such as Xanthan Gum to Improve Soil Properties

Authors: Amanda Mendonça; Paula V. Morais; Ana C. C. Pires; Ana Paula Chung; Paulo Venda Oliveira;

A Review on the Importance of Microbial Biopolymers Such as Xanthan Gum to Improve Soil Properties

Abstract

Chemical stabilization of soils is one of the most used techniques to improve the properties of weak soils in order to allow their use in geotechnical works. Although several binders can be used for this purpose, Portland cement is still the most used binder (alone or combined with others) to stabilize soils. However, the use of Portland cement is associated with many environmental problems, so microbiological-based approaches have been explored to replace conventional methods of soil stabilization as sustainable alternatives. Thus, the use of biopolymers, produced by microorganisms, has emerged as a technical alternative for soil improvement, mainly due to soil pore-filling, which is called the bioclogging method. Many studies have been carried out in the last few years to investigate the suitability and efficiency of the soil–biopolymer interaction and consequent properties relevant to geotechnical engineering. This paper reviews some of the recent applications of the xanthan gum biopolymer to evaluate its viability and potential to improve soil properties. In fact, recent results have shown that the use of xanthan gum in soil treatment induces the partial filling of the soil voids and the generation of additional links between the soil particles, which decreases the permeability coefficient and increases the mechanical properties of the soil. Moreover, the biopolymer’s economic viability was also analyzed in comparison to cement, and studies have demonstrated that xanthan gum has a strong potential, both from a technical and economical point of view, to be applied as a soil treatment.

Subjects by Vocabulary

Microsoft Academic Graph classification: Bioclogging law.invention law Soil properties Pulp and paper industry medicine.drug engineering.material Soil stabilization medicine Cement Portland cement Soil water engineering Environmental science Biopolymer Xanthan gum

Library of Congress Subject Headings: lcsh:Technology lcsh:Chemistry lcsh:QH301-705.5 lcsh:QC1-999 lcsh:T lcsh:Biology (General) lcsh:QD1-999 lcsh:TA1-2040 lcsh:Engineering (General). Civil engineering (General) lcsh:Physics

Keywords

Technology, geotechnical engineering, soil improvement, biopolymer, General Materials Science, Biology (General), Instrumentation, Fluid Flow and Transfer Processes, T, Physics, xanthan gum, General Engineering, Engineering (General). Civil engineering (General), Computer Science Applications, Chemistry, bioclogging, TA1-2040, QH301-705.5, QC1-999, geotechnical engineering; microbiology; biopolymer; bioclogging; xanthan gum; soil improvement, QD1-999, Process Chemistry and Technology, microbiology

47 references, page 1 of 5

1. Chang, I.; Im, J.; Cho, G.-C. Introduction of microbial biopolymers in soil treatment for future environmentally friendly and sustainable geotechnical engineering. Sustainability 2016, 8, 251. [CrossRef]

2. Ivanov, V.; Chu, J. Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev. Environ. Sci. Biotechnol. 2008, 7, 139-153. [CrossRef]

3. Murphy, E.M.; Ginn, T.R. Modeling microbial processes in porous media. Hydrogeol. J. 2000, 8, 142-158. [CrossRef]

4. Basu, D.; Misra, A. Sustainability in Geotechnical Engineering. In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, France, 2-6 September 2013. [CrossRef]

5. Narjary, B.; Aggarwal, P.; Singh, A.; Chakraborty, D.; Singh, R. Water availability in different soils in relation to hydrogel application. Geoderma 2012, 187-188, 94-101. [CrossRef]

6. Murthy, V.N.S. Geotechnical Engineering: Principles and Pratices of Soil Mechanics and Foudation Engineering; Marcel Dekker, Inc.: New York, NY, USA, 2016.

7. Baveye, P.; Vandevivere, P.; Blythe, L.H.; DeLeo, P.; Sanchez, L.D. Environmental Impact and Mechanisms of the Biological Clogging of Saturated Soils and Aquifer Materials. Crit. Rev. Environ. Sci. Technol. 2010, 28, 123-191. [CrossRef]

8. Velde, K.V.D.; Kiekens, P. Biopolymers: Overview of several properties and consequences on their applications. Polym. Test. 2002, 21, 433-442. [CrossRef]

9. Choi, S.; Chang, I.; Lee, M.; Lee, J.; Han, J.; Kwon, T. Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers. Constr. Build. Mater. 2020, 246, 118415. [CrossRef]

10. Jose, A.; Carvalho, F. Starch as Source of Polymeric Materials. In Biopolymers: Biomedical and Environmental Applications; Wiley: Salem, MA, USA, 2011.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 95
    download downloads 99
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    25
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    Powered byBIP!BIP!
  • 95
    views
    99
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
25
Top 10%
Average
Top 10%
95
99
gold