Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Publications Open Re...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sensors
Other literature type . Article . 2023 . Peer-reviewed
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2023
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sensors
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Sensors
Article . 2022
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO; Sensors
Article . Other literature type . 2023 . Peer-reviewed
License: CC BY
versions View all 10 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Acoustic Emission and Artificial Intelligence Procedure for Crack Source Localization.

Authors: Melchiorre, Jonathan; Manuello Bertetto, Amedeo; Rosso, Marco Martino; Marano, Giuseppe Carlo;

Acoustic Emission and Artificial Intelligence Procedure for Crack Source Localization.

Abstract

The acoustic emission (AE) technique is one of the most widely used in the field of structural monitoring. Its popularity mainly stems from the fact that it belongs to the category of non-destructive techniques (NDT) and allows the passive monitoring of structures. The technique employs piezoelectric sensors to measure the elastic ultrasonic wave that propagates in the material as a result of the crack formation’s abrupt release of energy. The recorded signal can be investigated to obtain information about the source crack, its position, and its typology (Mode I, Mode II). Over the years, many techniques have been developed for the localization, characterization, and quantification of damage from the study of acoustic emission. The onset time of the signal is an essential information item to be derived from waveform analysis. This information combined with the use of the triangulation technique allows for the identification of the crack location. In the literature, it is possible to find many methods to identify, with increasing accuracy, the onset time of the P-wave. Indeed, the precision of the onset time detection affects the accuracy of identifying the location of the crack. In this paper, two techniques for the definition of the onset time of acoustic emission signals are presented. The first method is based on the Akaike Information Criterion (AIC) while the second one relies on the use of artificial intelligence (AI). A recurrent convolutional neural network (R-CNN) designed for sound event detection (SED) is trained on three different datasets composed of seismic signals and acoustic emission signals to be tested on a real-world acoustic emission dataset. The new method allows taking advantage of the similarities between acoustic emissions, seismic signals, and sound signals, enhancing the accuracy in determining the onset time.

Country
Italy
Related Organizations
Keywords

source location, crack location, Chemical technology, Akaike Information Criterion (AIC); acoustic emission; artificial neural network; crack location; seismic signals; sound event detection; source location, TP1-1185, Acoustics, seismic signals, Akaike Information Criterion (AIC), sound event detection, Sound, acoustic emission; artificial neural network; Akaike Information Criterion (AIC); source location; seismic signals; crack location; sound event detection, Artificial Intelligence, Ultrasonics, Neural Networks, Computer, acoustic emission, artificial neural network

Powered by OpenAIRE graph
Found an issue? Give us feedback