
In advancing the transition of the energy sector toward heightened sustainability and environmental friendliness, biopolymers have emerged as key elements in the construction of triboelectric nanogenerators (TENGs) due to their renewable sources and excellent biodegradability. The development of these TENG devices is of significant importance to the next generation of renewable and sustainable energy technologies based on carbon-neutral materials. This paper introduces the working principles, material sources, and wide-ranging applications of biopolymer-based triboelectric nanogenerators (BP-TENGs). It focuses on the various categories of biopolymers, ranging from natural sources to microbial and chemical synthesis, showcasing their significant potential in enhancing TENG performance and expanding their application scope, while emphasizing their notable advantages in biocompatibility and environmental sustainability. To gain deeper insights into future trends, we discuss the practical applications of BP-TENG in different fields, categorizing them into energy harvesting, healthcare, and environmental monitoring. Finally, the paper reveals the shortcomings, challenges, and possible solutions of BP-TENG, aiming to promote the advancement and application of biopolymer-based TENG technology. We hope this review will inspire the further development of BP-TENG towards more efficient energy conversion and broader applications.
Review
Review
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
