publication . Article . Other literature type . 2018

Recent Advances in Supported Metal Catalysts for Syngas Production from Methane

Mohanned Mohamedali; Amr Henni; Hussameldin Ibrahim;
Open Access
  • Published: 07 Mar 2018 Journal: ChemEngineering, volume 2, page 9 (eissn: 2305-7084, Copyright policy)
  • Publisher: MDPI AG
Over the past few years, great attention is paid to syngas production processes from different resources especially from abundant sources, such as methane. This review of the literature is intended for syngas production from methane through the dry reforming (DRM) and the steam reforming of methane (SRM). The catalyst development for DRM and SRM represents the key factor to realize a commercial application through the utilization of more efficient catalytic systems. Due to the enormous amount of published literature in this field, the current work is mainly dedicated to the most recent achievements in the metal-oxide catalyst development for DRM and SRM in the p...
Persistent Identifiers
free text keywords: syngas production, dry reforming, bimetallic catalyst, Steam reforming, Catalysis, Bimetallic strip, Chemical engineering, Syngas, Metal catalyst, Materials science, Coke, Carbon dioxide reforming, Methane, chemistry.chemical_compound, chemistry, lcsh:Chemistry, lcsh:QD1-999
Related Organizations
Funded by
  • Funder: Natural Sciences and Engineering Research Council of Canada (NSERC)
90 references, page 1 of 6

1. 2. 3. Liu, K.; Song, C.; Subramani, V. Hydrogen and Syngas Production and Purification Technologies; John Wiley & Sons: Hoboken, NJ, USA, 2009.

Abatzoglou, N.; Fauteux-Lefebvre, C. Review of catalytic syngas production through steam or dry reforming and partial oxidation of studied liquid compounds. Wiley Interdiscip. Rev. Energy Environ. 2016, 2, 169-187. [CrossRef]

Wilhelm, D.J.; Simbeck, D.R.; Karp, A.D.; Dickenson, R.L. Syngas production for gas-to-liquids applications: Technologies, issues and outlook. Fuel Process. Technol. 2001, 71, 139-148. [CrossRef] Rostrup-Nielsen, J.R. New aspects of syngas production and use. Catal. Today 2000, 63, 159-164. [CrossRef] Abdullah, B.; Ghani, N.A.A.; Vo, D.-V.N. Recent advances in dry reforming of methane over Ni-based catalysts. J. Clean. Prod. 2017, 162, 170-185. [CrossRef]

Yusuf, R.O.; Noor, Z.Z.; Abba, A.H.; Hassan, M.A.A.; Din, M.F.M. Methane emission by sectors: A comprehensive review of emission sources and mitigation methods. Renew. Sustain. Energy Rev. 2012, 16, 5059-5070. [CrossRef]

Frontera, P.; Macario, A.; Aloise, A.; Antonucci, P.L.; Giordano, G.; Nagy, J.B. Effect of support surface on methane dry-reforming catalyst preparation. Catal. Today 2013, 218, 18-29. [CrossRef]

8. Mo, W.; Ma, F.; Liu, Y.; Liu, J.; Zhong, M.; Nulahong, A. Preparation of porous Al2O3 by template method and its application in Ni-based catalyst for CH4/CO2 reforming to produce syngas. Int. J. Hydrogen Energy 2015, 40, 16147-16158. [CrossRef]

9. Bang, S.; Hong, E.; Baek, S.W.; Shin, C.-H. Effect of acidity on Ni catalysts supported on P-modified Al2O3 for dry reforming of methane. Catal. Today 2018, 303, 100-105. [CrossRef]

10. Das, S.; Sengupta, M.; Patel, J.; Bordoloi, A. A study of the synergy between support surface properties and catalyst deactivation for CO2 reforming over supported Ni nanoparticles. Appl. Catal. A Gen. 2017, 545, 113-126. [CrossRef]

11. Zhang, R.-J.; Xia, G.-F.; Li, M.-F.; Wu, Y.; Nie, H.; Li, D.-D. Effect of support on the performance of Ni-based catalyst in methane dry reforming. J. Fuel Chem. Technol. 2015, 43, 1359-1365. [CrossRef]

12. Talkhoncheh, S.K.; Haghighi, M. Syngas production via dry reforming of methane over Ni-based nanocatalyst over various supports of clinoptilolite, ceria and alumina. J. Nat. Gas Sci. Eng. 2015, 23, 16-25. [CrossRef] [OpenAIRE]

13. Wang, N.; Yu, X.; Shen, K.; Chu, W.; Qian, W. Synthesis, characterization and catalytic performance of MgO-coated Ni/SBA-15 catalysts for methane dry reforming to syngas and hydrogen. Int. J. Hydrogen Energy 2013, 38, 9718-9731. [CrossRef]

14. Akbari, E.; Alavi, S.M.; Rezaei, M. Synthesis gas production over highly active and stable nanostructured NiMgOAl2O3 catalysts in dry reforming of methane: Effects of Ni contents. Fuel 2017, 194, 171-179. [CrossRef]

15. Titus, J.; Goepel, M.; Schunk, S.A.; Wilde, N.; Gläser, R. The role of acid/base properties in Ni/MgO-ZrO2-based catalysts for dry reforming of methane. Catal. Commun. 2017, 100, 76-80. [CrossRef]

16. Ay, H.; Üner, D. Dry reforming of methane over CeO2 supported Ni, Co and Ni-Co catalysts. Appl. Catal. B Environ. 2015, 179, 128-138. [CrossRef] [OpenAIRE]

17. Löfberg, A.; Guerrero-Caballero, J.; Kane, T.; Rubbens, A.; Jalowiecki-Duhamel, L. Ni/CeO2 based catalysts as oxygen vectors for the chemical looping dry reforming of methane for syngas production. Appl. Catal. B Environ. 2017, 212, 159-174. [CrossRef]

90 references, page 1 of 6
Any information missing or wrong?Report an Issue