• shareshare
  • link
  • cite
  • add
auto_awesome_motion View all 9 versions
Publication . Article . Other literature type . 2020

Study of Synthesis Pathways of the Essential Polyunsaturated Fatty Acid 20:5n-3 in the Diatom Chaetoceros Muelleri Using 13C-Isotope Labeling

Marine Remize; Frédéric Planchon; Ai Ning Loh; Fabienne Le Grand; Antoine Bideau; Nelly Le Goïc; Elodie Fleury; +4 Authors
Open Access
Published: 01 May 2020 Journal: Biomolecules, volume 10, issue 5 (eissn: 2218-273X, Copyright policy )
Publisher: MDPI
Country: France

: The present study sought to characterize the synthesis pathways producing the essential polyunsaturated fatty acid (PUFA) 20:5n-3 (EPA). For this, the incorporation of 13C was experimentally monitored into 10 fatty acids (FA) during the growth of the diatom Chaetoceros muelleri for 24 h. Chaetoceros muelleri preferentially and quickly incorporated 13C into C18 PUFAs such as 18:2n-6 and 18:3n-6 as well as 16:0 and 16:1n-7, which were thus highly 13C-enriched. During the experiment, 20:5n-3 and 16:3n-4 were among the least-enriched fatty acids. The calculation of the enrichment percentage ratio of a fatty acid B over its suspected precursor A allowed us to suggest that the diatom produced 20:5n-3 (EPA) by a combination between the n-3 (via 18:4n-3) and n-6 (via 18:3n-6 and 20:4n-6) synthesis pathways as well as the alternative &omega

-3 desaturase pathway (via 20:4n-6). In addition, as FA from polar lipids were generally more enriched in 13C than FA from neutral lipids, particularly for 18:1n-9, 18:2n-6 and 18:3n-6, the existence of acyl-editing mechanisms and connectivity between polar and neutral lipid fatty acid pools were also hypothesized. Because 16:3n-4 and 20:5n-3 presented the same concentration and enrichment dynamics, a structural and metabolic link was proposed between these two PUFAs in C. muelleri.

Subjects by Vocabulary

Library of Congress Subject Headings: lcsh:Microbiology lcsh:QR1-502

Microsoft Academic Graph classification: Biochemistry Polar lipids Isotope Neutral lipid Fatty acid chemistry.chemical_classification chemistry Chaetoceros muelleri Polyunsaturated fatty acid Diatom biology.organism_classification biology


Article, synthesis pathway, diatom, 20:5n-3 (EPA), Chaetoceros muelleri, acyl-editing mechanism, compound-specific isotope analysis, Acl, [SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM], [SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology, [SDE.BE]Environmental Sciences/Biodiversity and Ecology, 20:5n-3 (EPA), Chaetoceros muelleri, Molecular Biology, Biochemistry, [SDV.BBM.BC] Life Sciences [q-bio]/Biochemistry, Molecular Biology/Biochemistry [q-bio.BM], [SDV.MP] Life Sciences [q-bio]/Microbiology and Parasitology, [SDE.BE] Environmental Sciences/Biodiversity and Ecology, synthesis pathway, diatom, 5n-3 (EPA) [20], Chaetoceros muelleri, acyl-editing mechanism, compound-specific isotope analysis

30 references, page 1 of 3

Arts, M.T.; Ackman, R.G.; Holub, B.J. Essential fatty acids in aquatic ecosystems: A crucial link between diet and human health and evolution. Can. J. Fish. Aquat. Sci. 2001, 58, 122-137. [CrossRef] 15. Bell, M.V.; Tocher, D. Biosynthesis of polyunsaturated fatty acids in aquatic ecosystems: General pathways and new directions. In Lipids in Aquatic Ecosystems; Arts, M.T., Brett, M.T., Kainz, M., Eds.; Springer: New York, NY, USA, 2009; pp. 211-239.

16. Gurr, M.I.; Harwood, J.L.; Frayn, K.N. Fatty acids structure and metabolism: Fatty acids biosynthesis. In Lipid biochemistry; Science, B., Ed.; Blackwell Science: Hoboken, NJ, USA, 2002; pp. 21-59.

17. Khozin-Goldberg, I. The Physiology of Microalgae-Lipid metabolism in microalgae. In The Physiology of Microalgae; Borowitska, M.A., Beardall, J., Raven, J.A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 413-484. [OpenAIRE]

18. Metz, J.G.; Roessler, P.; Facciotti, D.; Levering, C.; Dittrich, F.; Lassner, M.; Valentine, R.; Lardizabal, K.; Domergue, F.; Yamada, A.; et al. Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science 2001, 293, 290-293. [CrossRef] 19. Domergue, F.; Lerchl, J.; Zähringer, U.; Heinz, E. Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. Eur. J. Biochem. 2002, 269, 4105-4113. [CrossRef] 20. Qi, B.; Beaudoin, F.; Fraser, T.; Stobart, A.K.; Napier, J.A.; Lazarus, C.M. Identification of a cDNA encoding a novel C18-D9 polyunsaturated fatty acid-specific elongating activity from the docosahexaenoic acid (DHA)-producing microalga, Isochrysis galbana. Febs Lett. 2002, 510, 159-165. [CrossRef] 21. Zhou, X.; Robert, S.S.; Petrie, J.R.; Frampton, D.M.F.; Mansour, M.P.; Blackburn, S.I.; Nichols, P.D.; Green, A.G.; Singh, S.P. Isolation and characterization of genes from the marine microalga Pavlova salina encoding three front-end desaturases involved in docosahexaenoic acid biosynthesis. Phytochemistry 2007, 68, 785-796.

[CrossRef] 22. Sayanova, O.; Haslam, R.P.; Caleron, M.V.; Lopez, N.R.; Worthy, C.; Rooks, P.; Allen, M.J.; Napier, J.A.

Identification and functional characterisation of genes encoding the omega-3 polyunsaturated fatty acid biosynthetic pathway from the coccolithophore Emiliania huxleyi. Phytochemistry 2011, 72, 594-600. [CrossRef] 23. Ratledge, C. Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie 2004, 86, 807-815. [CrossRef] [PubMed] 24. Armenta, R.E.; Valentine, M.C. Single-cell oils as a source of omega-3 fatty acids: An overview of recent advances. J. Am. Oil Chem. Soc. 2013, 90, 167-182. [CrossRef] 25. Ye, C.; Qiao, W.; Yu, X.; Ji, X.-J.; Huang, H.; Collier, J.L.; Liu, L. Reconstruction and analysis of the genome-scale metabolic model of Schizochytrium limacinum SR21 for docosahexaenoic acid production. BMC Genom. 2015, 16, 799-810. [CrossRef] [PubMed] 26. Hauvermale, A.; Kuner, J.; Rosenzweig, B.; Guerra, D.; Diltz, S.; Metz, J.G. Fatty acid production in Schizochytrium sp.: Involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase.

Chem. 1958, 231, 883-888.

38. Wang, L.; Shen, W.; Kazachkov, M.; Chen, G.; Chen, Q.; Carlsson, A.S.; Stymne, S.; Weselake, R.J.; Zou, J.

Metabolic interactions between the Lands cycle and the Kennedy pathway of glycerolipid synthesis in Arabidopsis developing seeds. Plant. Cell 2012, 24, 4652-4669. [CrossRef] 39. Courchesne, N.M.D.; Parisien, A.; Wang, B.; Lan, C.Q. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J. Biotechnol. 2009, 141, 31-41. [CrossRef] 40. Gong, Y.; Wan, X.; Jiang, M.; Hu, C.; Hu, H.; Huang, F. Metabolic engineering of microorganisms to produce omega-3 very long chain polyunsaturated fatty acids. Prog. Lipid Res. 2014, 56, 19-35. [CrossRef] 41. Xiong, W.; Liu, L.; Wu, C.; Yang, C.; Wu, Q. 13C-tracer and Gas Chromatography-Mass Spectrometry analyses reveal metabolic flux distribution in the oleaginous microalga Chlorella protothecoides. Plant. Physiol. 2010, 154, 1001-1011. [CrossRef] 42. Cui, J.; Diao, J.; Sun, T.; Shi, M.; Liu, L.; Wang, F.; Chen, L.; Zhang, W. 13C Metabolic Flux Analysis of enhanced lipid accumulation modulated by ethanolamine in Crypthecodinium cohnii. Front. Microbiol. 2018, 9, 956. [CrossRef] 43. Martzol , A.; Cahoreau, E.; Cogne, G.; Peyriga, L.; Portais, J.-C.; Dechandol, E.; Le Grand, F.; Massou, S.; Gonçalves, O.; Pruvost, J.; et al. Photobioreactor design for isotopic non-stationnary 13C-metabolic flux analysis (INST 13C-MFA) under photoautotrophic conditions. Biotechnol. Bioeng. 2012, 109, 3030-3040.

[CrossRef] 44. Grosse, J.; Van Breugel, P.; Boschker, H.T.S. Tracing carbon fixation in phytoplankton-compound specific and total 13C incorporation rates: 13C uptake into macromolecules. Limnol. Oceanogr. Methods 2015, 13, 288-302. [OpenAIRE]

Related to Research communities
Download fromView all 6 sources
Article . 2020
Providers: PubMed Central