Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Aerospacearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aerospace
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aerospace
Article . 2025
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL-INSA Toulouse
Article . 2025
License: CC BY
Data sources: HAL-INSA Toulouse
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Certification Gap Analysis for Normal-Category and Large Hydrogen-Powered Airplanes

Authors: Jézégou, Joël; Almeida-Marino, Alvaro Mauricio; O’sullivan, Gregory; Carrasco, Beatriz Jiménez; André, Robert; Gourinat, Yves;

Certification Gap Analysis for Normal-Category and Large Hydrogen-Powered Airplanes

Abstract

The transition to hydrogen as an aviation fuel, as outlined in current decarbonization roadmaps, is expected to result in the entry into service of hydrogen-powered aircraft in 2035. To achieve this evolution, certification regulations are key enablers. Due to the disruptive nature of hydrogen aircraft technologies and their associated hazards, it is essential to assess the maturity of the existing regulatory framework for certification to ensure its availability when manufacturers apply for aircraft certification. This paper presents the work conducted under the Clean Aviation CONCERTO project to advance certification readiness by comprehensively identifying gaps in the current European regulations. Generic methodologies were developed for regulatory gap and risk analyses and applied to a hydrogen turbine aircraft with non-propulsive fuel cells as the APU. The gap analysis, conducted on certification specifications for large and normal-category airplanes as well as engines, confirmed the overall adequacy of many existing requirements. However, important gaps exist to appropriately address hydrogen hazards particularly concerning fire and explosion, hydrogen storage and fuel systems, crashworthiness, and occupant survivability. The paper concludes by identifying critical areas for certification and highlighting the need for complementary hydrogen phenomenology data, which are key to guiding future research and regulatory efforts for certification readiness maturation.

Keywords

Aircraft certification, hydrogen aircraft, CONCERTO, [PHYS.MECA.MSMECA] Physics [physics]/Mechanics [physics]/Materials and structures in mechanics [physics.class-ph], aircraft certification, TL1-4050, certification readiness level, gap analysis, hydrogen safety, Hydrogen aircraft, Motor vehicles. Aeronautics. Astronautics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green
gold
Funded by