
handle: 11104/0320125
One of the emergencies rescue crews have to face is toxic gas leakages. The characteristics of the gas leakages differ with regard to their leakage duration. Long-term releases have plume-like behaviors that can be described by utilizing mean concentrations at individual exposed locations. In contrast, ensemble statistics of individual cloud characteristics are needed for short-term releases with puff-like behaviors to ensure fully aware risk assessment. The reason is that the time evolution of the concentration of short-term gas releases can differ wildly under the same mean ambient and leakage conditions. The duration from which the release can be classified as plume-like can be found only by studying the releases of different durations, which is the main aim of this paper. To investigate gas releases of different durations, wind tunnel experiments of gas releases in an idealized urban area were conducted. The results present a new method by which concentration signals of releases can be divided into three cloud phases: the arrival, the central and the departure cloud phase. The characteristics (e.g., lengths, mean concentrations) of the individual cloud phases are explored. The results indicate that the finite-duration releases for which the central cloud phase exists have the plume-like behavior for this cloud part.
plume, gas release, Meteorology. Climatology, wind tunnel, puff, cloud phase, QC851-999
plume, gas release, Meteorology. Climatology, wind tunnel, puff, cloud phase, QC851-999
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
