Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Revista de la Unión ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Revista de la Unión Matemática Argentina
Article . 2023 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.60692/22...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.60692/3q...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC BY
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Coupling local and nonlocal equations with Neumann boundary conditions

اقتران المعادلات المحلية وغير المحلية بشروط حدود نيومان
Authors: Gabriel Acosta; Francisco M. Bersetche; Julio D. Rossi;

Coupling local and nonlocal equations with Neumann boundary conditions

Abstract

Nous introduisons deux façons différentes de coupler les équations locales et non locales avec les conditions aux limites de Neumann de telle sorte que le modèle résultant est naturellement associé à une fonction d'énergie. Pour ces deux modèles, nous prouvons qu'il existe un minimiseur de l'énergie résultante qui est unique modulo en ajoutant une constante.

Introducimos dos formas diferentes de acoplar ecuaciones locales y no locales con condiciones de contorno de Neumann de tal manera que el modelo resultante se asocia naturalmente con un funcional de energía. Para estos dos modelos demostramos que existe un minimizador de la energía resultante que es único módulo sumando una constante.

We introduce two different ways of coupling local and nonlocal equations with Neumann boundary conditions in such a way that the resulting model is naturally associated with an energy functional. For these two models we prove that there is a minimizer of the resulting energy that is unique modulo adding a constant.

نقدم طريقتين مختلفتين لإقران المعادلات المحلية وغير المحلية بظروف حدود نيومان بطريقة ترتبط النموذج الناتج بشكل طبيعي بوظيفة الطاقة. بالنسبة لهذين النموذجين، نثبت أن هناك مقللًا للطاقة الناتجة وهو معامل فريد يضيف ثابتًا.

Keywords

Neumann boundary condition, Inverse Problems in Mathematical Physics and Imaging, Applied Mathematics, Pure mathematics, FOS: Mechanical engineering, Mathematical analysis, Nonlocal Partial Differential Equations and Boundary Value Problems, Mechanical engineering, Mathematics - Analysis of PDEs, Boundary Value Problems, Engineering, Computational Theory and Mathematics, Boundary (topology), Computer Science, Physical Sciences, FOS: Mathematics, Coupling (piping), Multiscale Methods for Heterogeneous Systems, Von Neumann architecture, Boundary value problem, Mathematical Physics, Mathematics, Analysis of PDEs (math.AP)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold