publication . Research . Article . Preprint . 2016

Designing and testing inflationary models with Bayesian networks

Layne C. Price; Hiranya V. Peiris; Jonathan Frazer; Richard Easther;
Open Access English
  • Published: 19 Feb 2016
  • Publisher: Deutsches Elektronen-Synchrotron, DESY, Hamburg
Abstract
Journal of cosmology and astroparticle physics 2016(02), 049 - 049(2016). doi:10.1088/1475-7516/2016/02/049
Subjects
free text keywords: inflation: model, boundary condition, Bayesian, network, hierarchy, reheating, horizon, 530, Astrophysics - Cosmology and Nongalactic Astrophysics, High Energy Physics - Phenomenology, High Energy Physics - Theory, Astronomy and Astrophysics, Science & Technology, Physical Sciences, Astronomy & Astrophysics, Physics, Particles & Fields, Physics, Inflation, Physics Of The Early Universe, Particle Physics - Cosmology Connection, Cosmological Parameters From Cmbr, Cosmological Parameters, Constraints, Inference, model [inflation], boundary condition, Bayesian, network, hierarchy, reheating, horizon, ddc:530, Horizon, Inflation, media_common.quotation_subject, media_common, Free parameter, Bayesian network, Physics, Statistical physics, Inference, Observable, Boundary value problem, Inflation (cosmology)
Funded by
NSF| Programs on Critical Problems in Physics, Astrophysics and Biophysics at the Aspen Center for Physics
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1066293
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Physics
,
EC| COSMICDAWN
Project
COSMICDAWN
Understanding the Origin of Cosmic Structure
  • Funder: European Commission (EC)
  • Project Code: 306478
  • Funding stream: FP7 | SP2 | ERC
,
EC| STRINGFLATION
Project
STRINGFLATION
Inflation in String Theory - Connecting Quantum Gravity with Observations
  • Funder: European Commission (EC)
  • Project Code: 647995
  • Funding stream: H2020 | ERC | ERC-COG
Validated by funder
57 references, page 1 of 4

[1] Planck Collaboration, P. Ade et al., Planck 2013 results. XXII. Constraints on in ation, Astron.Astrophys. 571 (2014) A22, [arXiv:1303.5082].

[2] Planck Collaboration, P. A. R. Ade et al., Planck 2015 results. XX. Constraints on in ation, arXiv:1502.02114.

[3] WMAP Collaboration, G. Hinshaw et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208 (2013) 19, [arXiv:1212.5226].

[4] K. S. Mandel, W. M. Wood-Vasey, A. S. Friedman, and R. P. Kirshner, Type Ia Supernova Light Curve Inference: Hierarchical Bayesian Analysis in the Near Infrared, Astrophys. J. 704 (2009) 629{651, [arXiv:0908.0536].

[5] M. C. March, R. Trotta, P. Berkes, G. D. Starkman, and P. M. Vaudrevange, Improved constraints on cosmological parameters from SNIa data, Mon. Not. Roy. Astron. Soc. 418 (2011) 2308{2329, [arXiv:1102.3237]. [OpenAIRE]

[6] K. S. Mandel, R. J. Foley, and R. P. Kirshner, Type Ia Supernova Colors and Ejecta Velocities: Hierarchical Bayesian Regression with Non-Gaussian Distributions, Astrophys. J. 797 (2014), no. 2 75, [arXiv:1402.7079].

[7] D. Rubin, G. Aldering, K. Barbary, K. Boone, G. Chappell, et al., UNITY: Confronting Supernova Cosmology's Statistical and Systematic Uncertainties in a Uni ed Bayesian Framework, arXiv:1507.01602.

[8] H. Shari , X. Jiao, R. Trotta, and D. A. van Dyk, BAHAMAS: new SNIa analysis reveals inconsistencies with standard cosmology, arXiv:1510.05954.

[9] S. M. Feeney, M. C. Johnson, J. D. McEwen, D. J. Mortlock, and H. V. Peiris, Hierarchical Bayesian Detection Algorithm for Early-Universe Relics in the Cosmic Microwave Background, Phys. Rev. D88 (2013) 043012, [arXiv:1210.2725].

[10] J. Alsing, A. Heavens, A. H. Ja e, A. Kiessling, B. Wandelt, and T. Ho mann, Hierarchical Cosmic Shear Power Spectrum Inference, arXiv:1505.07840.

[11] R. Easther and L. McAllister, Random matrices and the spectrum of N- ation, JCAP 0605 (2006) 018, [hep-th/0512102]. [OpenAIRE]

[12] Planck Collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, Astron.Astrophys. 571 (2014) A16, [arXiv:1303.5076].

[13] M. J. Mortonson and U. Seljak, A joint analysis of Planck and BICEP2 B modes including dust polarization uncertainty, JCAP 1410 (2014), no. 10 035, [arXiv:1405.5857]. [OpenAIRE]

[14] R. Flauger, J. C. Hill, and D. N. Spergel, Toward an Understanding of Foreground Emission in the BICEP2 Region, JCAP 1408 (2014) 039, [arXiv:1405.7351].

[15] BICEP2, Planck Collaboration, P. Ade et al., Joint Analysis of BICEP2/Keck Array and Planck Data, Phys. Rev. Lett. 114 (2015) 101301, [arXiv:1502.00612].

57 references, page 1 of 4
Any information missing or wrong?Report an Issue