
How should statistical procedures be designed so as to be scalable computationally to the massive datasets that are increasingly the norm? When coupled with the requirement that an answer to an inferential question be delivered within a certain time budget, this question has significant repercussions for the field of statistics. With the goal of identifying "time-data tradeoffs," we investigate some of the statistical consequences of computational perspectives on scability, in particular divide-and-conquer methodology and hierarchies of convex relaxations.
Published in at http://dx.doi.org/10.3150/12-BEJSP17 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm)
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, FOS: Mathematics, Mathematics - Statistics Theory, Machine Learning (stat.ML), Statistics Theory (math.ST), Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Statistics - Machine Learning, FOS: Mathematics, Mathematics - Statistics Theory, Machine Learning (stat.ML), Statistics Theory (math.ST), Machine Learning (cs.LG)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 69 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
