Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://engrxiv.org/...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
OSF Preprints
Preprint
Data sources: OSF Preprints
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
engrXiv
Preprint . 2021
Data sources: engrXiv
https://doi.org/10.31224/osf.i...
Article . 2021 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Photonic integrated circuits for life sciences

Authors: Klos, Thomas; Koch, Sina; Klein, Edwin; Merget, Florian; Dekker, Ronald; Witzens, Jeremy; Veenstra, Theo; +3 Authors

Photonic integrated circuits for life sciences

Abstract

A large number of discrete optical components could be replaced by a photonic integrated circuit in a multi-color laser engine for the visible spectral range. The photonic integrated circuit is based on silicon nitride waveguide technology. We report on the use of silicon nitride (SiN) photonic integrated circuits (PICs) in high-value instrumentation, namely multi-color laser engines (MLEs), a core element of cutting-edge biophotonic systems applied to confocal microscopy, fluorescent microscopy - including super-resolution stimulated emission depletion (STED) microscopy - flow cytometry, optogenetics, genetic analysis and DNA sequencing, to name just a few. These have in common the selective optical excitation of molecules - fluorophores, or, in the case of optogenetics, light-gated ion channels - with laser radiation falling within their absorption spectrum. Unambiguous identification of molecules or cellular subsets often requires jointly analyzing fluorescent signals from several fluorescent markers, so that MLEs are required to provide excitation wavelengths for several commercially available biocompatible fluorophores. A number of functionalities are required from MLEs in addition to sourcing the required wavelengths: Variable attenuation and/or digital intensity modulation in the Hz to kHz range are required for a number of applications such as optical trapping, lifetime imaging, or fluorescence recovery after photobleaching (FRAP). Moreover, switching of the laser between two fiber outputs can be utilized for example to switch between scanning confocal microscopy and widefield illumination modes, for instance, for conventional fluorescence imaging.

Related Organizations
Keywords

Physics - Instrumentation and Detectors, bepress|Engineering, FOS: Physical sciences, Instrumentation and Detectors (physics.ins-det), Electrical and Computer Engineering, bepress|Engineering|Electrical and Computer Engineering|Electromagnetics and Photonics, engrXiv|Engineering|Electrical and Computer Engineering|Electromagnetics and Photonics, Engineering, engrXiv|Engineering, bepress|Engineering|Electrical and Computer Engineering, engrXiv|Engineering|Electrical and Computer Engineering, Electromagnetics and Photonics, info:eu-repo/classification/ddc/620, Physics - Optics, Optics (physics.optics)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
bronze