Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ OpenAPC Global Initi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.25968/op...
Article . 2022
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A SIEM Architecture for Advanced Anomaly Detection

Authors: Laue, Tim; Klecker, Timo; Kleiner, Carsten (Prof. Dr.); Detken, Kai-Oliver;

A SIEM Architecture for Advanced Anomaly Detection

Abstract

Dramatic increases in the number of cyber security attacks and breaches toward businesses and organizations have been experienced in recent years. The negative impacts of these breaches not only cause the stealing and compromising of sensitive information, malfunctioning of network devices, disruption of everyday operations, financial damage to the attacked business or organization itself, but also may navigate to peer businesses/organizations in the same industry. Therefore, prevention and early detection of these attacks play a significant role in the continuity of operations in IT-dependent organizations. At the same time detection of various types of attacks has become extremely difficult as attacks get more sophisticated, distributed and enabled by Artificial Intelligence (AI). Detection and handling of these attacks require sophisticated intrusion detection systems which run on powerful hardware and are administered by highly experienced security staff. Yet, these resources are costly to employ, especially for small and medium-sized enterprises (SMEs). To address these issues, we developed an architecture -within the GLACIER project- that can be realized as an in-house operated Security Information Event Management (SIEM) system for SMEs. It is affordable for SMEs as it is solely based on free and open-source components and thus does not require any licensing fees. Moreover, it is a Self-Contained System (SCS) and does not require too much management effort. It requires short configuration and learning phases after which it can be self-contained as long as the monitored infrastructure is stable (apart from a reaction to the generated alerts which may be outsourced to a service provider in SMEs, if necessary). Another main benefit of this system is to supply data to advanced detection algorithms, such as multidimensional analysis algorithms, in addition to traditional SIEMspecific tasks like data collection, normalization, enrichment, and storage. It supports the application of novel methods to detect security-related anomalies. The most distinct feature of this system that differentiates it from similar solutions in the market is its user feedback capability. Detected anomalies are displayed in a Graphical User Interface (GUI) to the security staff who are allowed to give feedback for anomalies. Subsequently, this feedback is utilized to fine-tune the anomaly detection algorithm. In addition, this GUI also provides access to network actors for quick incident responses. The system in general is suitable for both Information Technology (IT) and Operational Technology (OT) environments, while the detection algorithm must be specifically trained for each of these environments individually.

Country
Germany
Related Organizations
Keywords

ddc:004, Open Source, Computersicherheit, 004 Informatik, Eindringerkennung, 004, ddc: ddc:004

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green