
This thesis proposes a security solution in key management and Intrusion Detection System (IDS) for wireless sensor networks. It addresses challenges of designing in energy and security requirement. Since wireless communication consumes the most energy in sensor network, transmissions must be used efficiently. We propose Hint Key Distribution (HKD) for key management and Adaptive IDS for distributing activated IDS nodes and cooperative operation of these two protocols. HKD protocol focuses on the challenges of energy, computation and security. It uses a hint message and key chain to consume less energy while self-generating key can secure the secret key. It is a proposed solution to key distribution in sensor networks. Adaptive IDS uses threshold and voting algorithm to distribute IDS through the network. An elected node is activated IDS to monitor its network and neighbors. A threshold is used as a solution to reduce number of repeated activations of the same node. We attempt to distribute the energy use equally across the network. In a cooperative protocol, HKD and Adaptive IDS exchange information in order to adjust to the current situation. The level of alert controls the nature of the interaction between the two protocols.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
