<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 11104/0006192
Drag reduction of dense fine-grained slurriesAttractive and repulsive forces acting in the slurry due to different ions absorbed on surface of fine particles, especially colloidal ones, strongly affect the flow behaviour of highly concentrated fine-grained slurries. The attractive forces between the fine-grained solid particles initiate the coagulation process, which gives rise to voluminous aggregates where a large amount of water is fixed. A modification of the physical-chemical environment of the slurry by addition of a peptizing agent produces repulsive forces between particles. They result in destruction of the aggregates, water originally fixed in the aggregates is liberated, the viscous friction can play a larger role in the slurry, which is liquefied. To prove these process three different kaolin-water mixtures were tested with an overpressure capillary viscometer, rotational viscometer, and experimental pipeline loop. The effect of two peptizing agents and their concentration was investigated. It was demonstrated that even very low concentration of peptizing agent results in a significant reduction in the apparent viscosity and in the yield stress.
peptization, reologie suspenzí, kaolinové suspenze, TA Engineering (General). Civil engineering (General), experimentální výzkum, Hydraulic engineering, kaolin slurry, slurry rheology, drag reduction, experimental investigation, snižování tření, peptizace, TC1-978
peptization, reologie suspenzí, kaolinové suspenze, TA Engineering (General). Civil engineering (General), experimentální výzkum, Hydraulic engineering, kaolin slurry, slurry rheology, drag reduction, experimental investigation, snižování tření, peptizace, TC1-978
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 15 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |