Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ e-Prints Sotonarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
e-Prints Soton
Conference object . 2011 . Peer-reviewed
Data sources: e-Prints Soton
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.24406/pu...
Other literature type . 2011
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Consensus acceleration in multi-agent systems with the Chebyshev semi-iterative method

Authors: Cavalcante, R. L. G.; Rogers, A.; Jennings, Nick;

Consensus acceleration in multi-agent systems with the Chebyshev semi-iterative method

Abstract

We consider the fundamental problem of reaching consensus in multiagent systems. To date, the consensus problem has been typically solved with decentralized algorithms based on graph Laplacians. However, the convergence of these algorithms is often too slow for many important multiagent applications, and thus they are increasingly being combined with acceleration methods. Unfortunately, state-of-the-art acceleration techniques require parameters that can be optimally selected only if complete information about the network topology is available, which is rarely the case in practice. We address this limitation by deriving two novel acceleration methods that can deliver good performance even if little information about the network is available. The first is based on the Chebyshev semi-iterative method and maximizes the worst-case convergence speed given that only rough bounds on the extremal eigenvalues of the network matrix are available. It can be applied to systems where agents use unreliable communication links, and its computational complexity is similar to those of simple Laplacian-based methods. This algorithm requires synchronization among agents, so we also propose an asynchronous version that approximates the output of the synchronous algorithm. Mathematical analysis and numerical simulations show that the convergence speed of the proposed acceleration methods decrease gracefully in scenarios where the sole use of Laplacian-based methods is known to be impractical.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities