
handle: 11391/170214
We consider nonlinear Neumann problems driven by the p-Laplacian plus an indefinite potential. First we develop the spectral properties of such differential operators. Subsequently, using these spectral properties and variational methods based on critical point theory, truncation techniques and Morse theory, we prove existence and multiplicity theorems for resonant problems.
Indefinite potential; principal eigenfunction; Morse theory; nonlinear regularity; existence and multiplicity theorems; nonlinear maximum principle
Indefinite potential; principal eigenfunction; Morse theory; nonlinear regularity; existence and multiplicity theorems; nonlinear maximum principle
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 58 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
