
Under what circumstances might every extension of a combinatorial structure contain more copies of another one than the original did? This property, which we call prolificity, holds universally in some cases (e.g., finite linear orders) and only trivially in others (e.g., permutations). Integer compositions, or equivalently layered permutations, provide a middle ground. In that setting, there are prolific compositions for a given pattern if and only if that pattern begins and ends with 1. For each pattern, there is an easily constructed automaton that recognises prolific compositions for that pattern. Some instances where there is a unique minimal prolific composition for a pattern are classified.
FOS: Computer and information sciences, computer science - discrete mathematics, Discrete Mathematics (cs.DM), mathematics - combinatorics, QA1-939, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Mathematics, Computer Science - Discrete Mathematics
FOS: Computer and information sciences, computer science - discrete mathematics, Discrete Mathematics (cs.DM), mathematics - combinatorics, QA1-939, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), Mathematics, Computer Science - Discrete Mathematics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
