Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ MATERIALS TRANSACTIO...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
MATERIALS TRANSACTIONS
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Alloy Design of Ti Alloys Using Ubiquitous Alloying Elements and Characteristics of Their Levitation-Melted Alloys

Authors: Yongbum Choi; Gen Sasaki; Takuro Endo; Kazuhiro Matsugi;

Alloy Design of Ti Alloys Using Ubiquitous Alloying Elements and Characteristics of Their Levitation-Melted Alloys

Abstract

The + type Ti-5.5Al-2Fe and type Ti-2.5Fe-2Mn-2Zr alloys have been theoretically designed, for the modification of Ti-6Al-4V and the achievement of the high tensile strength more than 1000MPa at the solution treatment state, respectively, using ubiquitous alloying elements in order to establish the strategic method for suppressing utilization of rare metals. The utilization of the cold crucible levitation melting (CCLM) is very useful for the production of ingots, because titanium is very chemically reactive at high temperature. The experimental alloys with high purity and without contaminations from a crucible were prepared, and the homogeneous melt was also achieved by the diffusion mixing effect of CCLM. The microstructure, phase stability, strength, corrosion-resistance and workable properties of the design Ti-5.5Al-2Fe alloy, were comparable to those of Ti-6Al-4V. In contrast, the solution heat treated Ti-2.5Fe-2Mn-2Zr alloy showed the tensile strength of 1200MPa, and the 1.3 times increase in the specific strength compared with Ti-15Mo-5Zr-3Al. The alloy design can be successfully carried out even using ubiquitous alloying elements by the d-electrons concept, which leads to the establishment of one method for the strategic utilization of rare metals. [doi:10.2320/matertrans.F-M2010801]

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    24
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
24
Top 10%
Top 10%
Top 10%
gold