
be "stabilizable." Here A is an n by n matrix, x and b are n by 1 column matrices (or vectors), p is a 1 by n row matrix and q and u are scalars. We shall assume that the elements of all these may be complex numbers. The vector x can be interpreted physically as the output of a linear system characterized by the matrix A. The vector b corresponds to some feedback or control mechanism with u the controlling signal and p and q adjustable parameters in the controlling circuit. Romanenko calls the system (A, b) stabilizable if for any nonempty set S of n+1 or less complex numbers there exist p and q such that
ordinary differential equations
ordinary differential equations
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 40 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
