Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dual-Energy CT of the Lung

Authors: U. Joseph Schoepf; Yan’E Zhao; Long Jiang Zhang; Guangming Lu;

Dual-Energy CT of the Lung

Abstract

The introduction of dual-energy CT (DECT) has ushered in the ability of material differentiation and tissue characterization beyond the traditional CT attenuation scale. This quality has been exploited for visualizing and quantifying the specific tissue content using radiographic contrast agents, such as iodine-based contrast media or inhaled xenon gas. Applications of this paradigm in the thorax include characterization of the pulmonary blood pool in the setting of acute or chronic pulmonary embolism (PE) and characterization of diseases of the lung parenchyma. Selective xenon detection is being explored for imaging of lung ventilation. In addition, the usefulness of DECT-based selective iodine uptake measurements has been described for the diagnosis and surveillance of thoracic malignancies. This article reviews the current applications of DECT-based imaging techniques in the chest with an emphasis on the diagnosis and characterization of pulmonary thromboembolic disorders.DECT can provide both anatomic and functional information about the lungs in a variety of pulmonary disease states based on a single contrast-enhanced CT examination. This quality has been shown to improve the diagnosis of acute and chronic PEs, other vascular disorders, lung malignancies, and parenchymal diseases. Further developments in DECT techniques and CT scanner technology will further foster and enhance the utility of this application and open new avenues in lung imaging.

Related Organizations
Keywords

Lung Diseases, Radiography, Dual-Energy Scanned Projection, Humans, Radiographic Image Interpretation, Computer-Assisted, Radiography, Thoracic, Tomography, X-Ray Computed, Lung

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    143
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
143
Top 10%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!