
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Commensal and pathogenic fungi are exposed to hydrogen peroxide (H2O2) produced by macrophages of the host. Pathogenic fungi counteract the harmful effects of H2O2 with the enzyme catalase (EC 1.11.1.6), which decomposes two molecules of H2O2 to two molecules of H2O and O2. Contribution of antioxidant systems on fungal virulence is actively studied. Measurement of catalase activity can contribute to the elucidation of the factors that influence the regulation of this pivotal enzyme. Here we describe a simple spectrophotometric method in which the activity of catalase is measured in total yeast extracts. Decomposition of H2O2 by the yeast extract is followed by the decrease in absorbance at 240 nm. The difference in absorbance through time (ΔA240) is inferred as the measure of catalase activity.
QH301-705.5, Biology (General)
QH301-705.5, Biology (General)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
