Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Antimicrobial Susceptibility Breakpoints

PK-PD and Susceptibility Breakpoints
Authors: Paul G. Ambrose;

Antimicrobial Susceptibility Breakpoints

Abstract

Since the early 1960s, considerable advancements have been made to standardize and provide quality assurance for clinical susceptibility testing procedures of antimicrobial agents. Controversy, however, remains as to the interpretation of clinical laboratory susceptibility test results. While some feel susceptibility breakpoints should only detect resistance mechanisms, others believe they should predict a high probability of clinical response. This has resulted in confusion among clinicians, as it has been apparent for some time that there can be discordance between interpretive test results and clinical response to therapy (generally cures of infections caused by resistant pathogens). Nearly simultaneous with the beginning of the standardization process for clinical susceptibility testing procedures, the first penicillin-resistant Streptococcus pneumoniae isolates were detected. During the ensuing decades, penicillin-resistant pneumococci became a greater clinical concern, resulting in macrolides emerging as safe therapeutic alternatives to beta-lactam agents for the treatment of community-acquired respiratory tract infections. During the last 10 years, the incidence of pneumococcal isolates with elevated macrolide minimum inhibitory concentration (MIC) values has also increased, yet the debate over the clinical meaning of these statistics persists. The youthful science of pharmacokinetics-pharmacodynamics provides a useful platform to determine which pneumococcal strains with elevated MIC values can be treated with contemporary dosing regimens and also facilitates the proper selection of antimicrobial breakpoints for all antimicrobial classes, including the newer macrolides.

Keywords

Anti-Infective Agents, Area Under Curve, Clarithromycin, Advisory Committees, Guidelines as Topic, Microbial Sensitivity Tests, Monte Carlo Method

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!