publication . Article . Preprint . 2021

Conductance asymmetries in mesoscopic superconducting devices due to finite bias

De Almeida Nascimento e Melo, A.A.; Liu, C.; Rozek, P.M.; Rosdahl, T.O.; Wimmer, M.T.;
Open Access
  • Published: 01 Jan 2021 Journal: SciPost Physics, volume 10 (eissn: 2542-4653, Copyright policy)
  • Publisher: Stichting SciPost
  • Country: Netherlands
Abstract
Tunneling conductance spectroscopy in normal metal-superconductor junctions is an important tool for probing Andreev bound states in mesoscopic superconducting devices, such as Majorana nanowires. In an ideal superconducting device, the subgap conductance obeys specific symmetry relations, due to particle-hole symmetry and unitarity of the scattering matrix. However, experimental data often exhibits deviations from these symmetries or even their explicit breakdown. In this work, we identify a mechanism that leads to conductance asymmetries without quasiparticle poisoning. In particular, we investigate the effects of finite bias and include the voltage dependence...
Persistent Identifiers
Subjects
arXiv: Condensed Matter::SuperconductivityCondensed Matter::Mesoscopic Systems and Quantum Hall Effect
free text keywords: Condensed Matter - Mesoscale and Nanoscale Physics
Funded by
EC| STATOPINS
Project
STATOPINS
Theory of statistical topological insulators
  • Funder: European Commission (EC)
  • Project Code: 638760
  • Funding stream: H2020 | ERC | ERC-STG
47 references, page 1 of 4

[1] J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys. 75(7), 076501 (2012).

[2] M. Leijnse and K. Flensberg, Introduction to topological superconductivity and Majorana fermions, Semicond. Sci. Technol. 27(12), 124003 (2012). [OpenAIRE]

[3] C. Beenakker, Search for Majorana fermions in superconductors, Annu. Rev. Condens. Matter Phys. 4(1), 113 (2013), doi:10.1146/annurev-conmatphys-030212-184337.

[4] T. D. Stanescu and S. Tewari, Majorana fermions in semiconductor nanowires: fundamentals, modeling, and experiment, J. Phys.: Condens. Matter 25(23), 233201 (2013).

[5] J.-H. Jiang and S. Wu, Non-Abelian topological superconductors from topological semimetals and related systems under the superconducting proximity e ect, J. Phys.: Condens. Matter 25(5), 055701 (2013).

[10] R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P. Krogstrup, C. M. Marcus and Y. Oreg, Majorana zero modes in superconductor{semiconductor heterostructures, Nat. Rev. Mater. 3(5), 52 (2018), doi:10.1038/s41578-018-0003-1.

[11] H. Zhang, D. E. Liu, M. Wimmer and L. P. Kouwenhoven, Next steps of quantum transport in Majorana nanowire devices, Nature Communications 10(1), 5128 (2019), doi:10.1038/s41467-019-13133-1.

[12] S. Frolov, M. Manfra and J. Sau, Quest for topological superconductivity at superconductor-semiconductor interfaces, arXiv:1912.11094 (2019).

[13] J. D. Sau, R. M. Lutchyn, S. Tewari and S. Das Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104, 040502 (2010), doi:10.1103/PhysRevLett.104.040502.

[14] R. M. Lutchyn, J. D. Sau and S. Das Sarma, Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures, Phys. Rev. Lett. 105, 077001 (2010), doi:10.1103/PhysRevLett.105.077001.

[15] Y. Oreg, G. Refael and F. von Oppen, Helical liquids and Majorana bound states in quantum wires, Phys. Rev. Lett. 105, 177002 (2010), doi:10.1103/PhysRevLett.105.177002.

[16] J. D. Sau, S. Tewari, R. M. Lutchyn, T. D. Stanescu and S. Das Sarma, NonAbelian quantum order in spin-orbit-coupled semiconductors: Search for topological Majorana particles in solid-state systems, Phys. Rev. B 82, 214509 (2010), doi:10.1103/PhysRevB.82.214509.

[17] V. Mourik, K. Zuo, S. M. Frolov, S. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices, Science 336(6084), 1003 (2012), doi:10.1126/science.1222360. [OpenAIRE]

[18] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum and H. Shtrikman, Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions, Nat. Phys. 8(12), 887 (2012).

[19] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caro and H. Q. Xu, Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device, Nano Lett. 12(12), 6414 (2012), doi:10.1021/nl303758w.

47 references, page 1 of 4
Abstract
Tunneling conductance spectroscopy in normal metal-superconductor junctions is an important tool for probing Andreev bound states in mesoscopic superconducting devices, such as Majorana nanowires. In an ideal superconducting device, the subgap conductance obeys specific symmetry relations, due to particle-hole symmetry and unitarity of the scattering matrix. However, experimental data often exhibits deviations from these symmetries or even their explicit breakdown. In this work, we identify a mechanism that leads to conductance asymmetries without quasiparticle poisoning. In particular, we investigate the effects of finite bias and include the voltage dependence...
Persistent Identifiers
Subjects
arXiv: Condensed Matter::SuperconductivityCondensed Matter::Mesoscopic Systems and Quantum Hall Effect
free text keywords: Condensed Matter - Mesoscale and Nanoscale Physics
Funded by
EC| STATOPINS
Project
STATOPINS
Theory of statistical topological insulators
  • Funder: European Commission (EC)
  • Project Code: 638760
  • Funding stream: H2020 | ERC | ERC-STG
47 references, page 1 of 4

[1] J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep. Prog. Phys. 75(7), 076501 (2012).

[2] M. Leijnse and K. Flensberg, Introduction to topological superconductivity and Majorana fermions, Semicond. Sci. Technol. 27(12), 124003 (2012). [OpenAIRE]

[3] C. Beenakker, Search for Majorana fermions in superconductors, Annu. Rev. Condens. Matter Phys. 4(1), 113 (2013), doi:10.1146/annurev-conmatphys-030212-184337.

[4] T. D. Stanescu and S. Tewari, Majorana fermions in semiconductor nanowires: fundamentals, modeling, and experiment, J. Phys.: Condens. Matter 25(23), 233201 (2013).

[5] J.-H. Jiang and S. Wu, Non-Abelian topological superconductors from topological semimetals and related systems under the superconducting proximity e ect, J. Phys.: Condens. Matter 25(5), 055701 (2013).

[10] R. M. Lutchyn, E. P. A. M. Bakkers, L. P. Kouwenhoven, P. Krogstrup, C. M. Marcus and Y. Oreg, Majorana zero modes in superconductor{semiconductor heterostructures, Nat. Rev. Mater. 3(5), 52 (2018), doi:10.1038/s41578-018-0003-1.

[11] H. Zhang, D. E. Liu, M. Wimmer and L. P. Kouwenhoven, Next steps of quantum transport in Majorana nanowire devices, Nature Communications 10(1), 5128 (2019), doi:10.1038/s41467-019-13133-1.

[12] S. Frolov, M. Manfra and J. Sau, Quest for topological superconductivity at superconductor-semiconductor interfaces, arXiv:1912.11094 (2019).

[13] J. D. Sau, R. M. Lutchyn, S. Tewari and S. Das Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104, 040502 (2010), doi:10.1103/PhysRevLett.104.040502.

[14] R. M. Lutchyn, J. D. Sau and S. Das Sarma, Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures, Phys. Rev. Lett. 105, 077001 (2010), doi:10.1103/PhysRevLett.105.077001.

[15] Y. Oreg, G. Refael and F. von Oppen, Helical liquids and Majorana bound states in quantum wires, Phys. Rev. Lett. 105, 177002 (2010), doi:10.1103/PhysRevLett.105.177002.

[16] J. D. Sau, S. Tewari, R. M. Lutchyn, T. D. Stanescu and S. Das Sarma, NonAbelian quantum order in spin-orbit-coupled semiconductors: Search for topological Majorana particles in solid-state systems, Phys. Rev. B 82, 214509 (2010), doi:10.1103/PhysRevB.82.214509.

[17] V. Mourik, K. Zuo, S. M. Frolov, S. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices, Science 336(6084), 1003 (2012), doi:10.1126/science.1222360. [OpenAIRE]

[18] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum and H. Shtrikman, Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions, Nat. Phys. 8(12), 887 (2012).

[19] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caro and H. Q. Xu, Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device, Nano Lett. 12(12), 6414 (2012), doi:10.1021/nl303758w.

47 references, page 1 of 4
Any information missing or wrong?Report an Issue