Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Computational Physics
Article . 2025 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
https://doi.org/10.2139/ssrn.4...
Article . 2024 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Regularized Reduced Order Lippmann-Schwinger-Lanczos Method for Inverse Scattering Problems in the Frequency Domain

Regularized reduced order Lippmann-Schwinger-Lanczos method for inverse scattering problems in the frequency domain
Authors: J. Baker; E. Cherkaev; V. Druskin; S. Moskow; M. Zaslavsky;

Regularized Reduced Order Lippmann-Schwinger-Lanczos Method for Inverse Scattering Problems in the Frequency Domain

Abstract

Inverse scattering has a broad applicability in quantum mechanics, remote sensing, geophysical, and medical imaging. This paper presents a robust direct reduced order model (ROM) method for solving inverse scattering problems based on an efficient approximation of the resolvent operator regularizing the Lippmann-Schwinger-Lanczos (LSL) algorithm. We show that the efficiency of the method relies upon the weak dependence of the orthogonalized basis on the unknown potential in the Schrödinger equation by demonstrating that the Lanczos orthogonalization is equivalent to performing Gram-Schmidt on the ROM time snapshots. We then develop the LSL algorithm in the frequency domain with two levels of regularization. We show that the same procedure can be extended beyond the Schrödinger formulation to the Helmholtz equation, e.g., to imaging the conductivity using diffusive electromagnetic fields in conductive media with localized positive conductivity perturbations. Numerical experiments for Helmholtz and Schrödinger problems show that the proposed bi-level regularization scheme significantly improves the performance of the LSL algorithm, allowing for good reconstructions with noisy data and large data sets.

Keywords

Numerical methods for inverse problems for boundary value problems involving PDEs, FOS: Mathematics, reduced order model, Schrödinger equation, inverse scattering, Helmholtz equation, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), Lippmann-Schwinger Lanczos algorithm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
Green