<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Тема выпуÑкной квалификационной работы: «Обнаружение Ñетевых атак методом Ð¾Ð±ÑƒÑ‡ÐµÐ½Ð¸Ñ Ñ Ð¿Ð¾Ð´ÐºÑ€ÐµÐ¿Ð»ÐµÐ½Ð¸ÐµÐ¼Â». Целью работы ÑвлÑетÑÑ Ð²Ñ‹Ñвление вредоноÑного трафика Ñреди потока Ñетевых пакетов при помощи нейронной Ñети, иÑпользующей архитектуру Ð¾Ð±ÑƒÑ‡ÐµÐ½Ð¸Ñ Ñ Ð¿Ð¾Ð´ÐºÑ€ÐµÐ¿Ð»ÐµÐ½Ð¸ÐµÐ¼. Предметом иÑÑÐ»ÐµÐ´Ð¾Ð²Ð°Ð½Ð¸Ñ ÑвлÑÑŽÑ‚ÑÑ Ñовременные методы фильтрации Ñетевых пакетов. Задачи, решаемые в ходе иÑÑледованиÑ:ИÑÑледование проблемы Ð¾Ð±Ð½Ð°Ñ€ÑƒÐ¶ÐµÐ½Ð¸Ñ Ñетевых атак. Изучение оÑобенноÑтей архитектуры Ð¾Ð±ÑƒÑ‡ÐµÐ½Ð¸Ñ Ñ Ð¿Ð¾Ð´ÐºÑ€ÐµÐ¿Ð»ÐµÐ½Ð¸ÐµÐ¼. ÐŸÑ€Ð¾Ð³Ñ€Ð°Ð¼Ð¼Ð½Ð°Ñ Ñ€ÐµÐ°Ð»Ð¸Ð·Ð°Ñ†Ð¸Ñ Ð¼ÐµÑ‚Ð¾Ð´Ð° выÑÐ²Ð»ÐµÐ½Ð¸Ñ Ñетевых атак в заданном датаÑете Ñ Ð¿Ñ€Ð¸Ð¼ÐµÐ½ÐµÐ½Ð¸ÐµÐ¼ нейронной Ñети, иÑпользующей архитектуру Ð¾Ð±ÑƒÑ‡ÐµÐ½Ð¸Ñ Ñ Ð¿Ð¾Ð´ÐºÑ€ÐµÐ¿Ð»ÐµÐ½Ð¸ÐµÐ¼. Оценка ÑкороÑти и точноÑти работы Ñозданного ÑредÑтва. Ð’ ходе работы был иÑÑледован общий алгоритм архитектуры Ð¾Ð±ÑƒÑ‡ÐµÐ½Ð¸Ñ Ñ Ð¿Ð¾Ð´ÐºÑ€ÐµÐ¿Ð»ÐµÐ½Ð¸ÐµÐ¼. Кроме того, были проанализированы Ñовременные иÑÑÐ»ÐµÐ´Ð¾Ð²Ð°Ð½Ð¸Ñ Ð² облаÑти обеÑÐ¿ÐµÑ‡ÐµÐ½Ð¸Ñ Ð±ÐµÐ·Ð¾Ð¿Ð°ÑноÑти передачи данных через Ñеть. Ð’ результате работы было реализовано ÑредÑтво выÑÐ²Ð»ÐµÐ½Ð¸Ñ Ð²Ñ€ÐµÐ´Ð¾Ð½Ð¾Ñного трафика, затем была продемонÑтрирована ÑффективноÑть ÑредÑтва. Был Ñделан вывод, что безопаÑноÑть Ñетевого Ñтека может быть уÑилена по Ñравнению Ñ Ð¸Ð¼ÐµÑŽÑ‰Ð¸Ð¼ÑÑ Ð½Ð° данный момент уровнем защиты. Полученные результаты могут быть иÑпользованы в качеÑтве оÑновы Ð´Ð»Ñ Ð¿Ñ€Ð¾ÐµÐºÑ‚Ð¸Ñ€Ð¾Ð²Ð°Ð½Ð¸Ñ ÑредÑтв динамичеÑкого анализа Ñетевого трафика.
Topic of the final qualification work: "Attack detection by reinforcement learning". The purpose of the work is to detect malicious traffic among packet streams using a neural network using a reinforcement learning architecture. The subject of the research is modern methods of packet filtering. Tasks to be solved during the study:Study of the problems of identifying the network attacks. Features of the structure with reinforcement learning. Development of a method for detecting attacks at a given date using a neural network using reinforcement learning architecture. Software implementation of the developed method. Evaluation of the speed and accuracy of the created tool. In the course of the work, the general algorithm of the architecture of reinforcement learning was investigated. In addition, modern research in the field of data transmission security through the network was analyzed. The work resulted in development of a tool to detecting malicious traffic. Tool has satisfactory indicators in not only quantitative defect detection, but also in productivity. The studying point to conclusion that network stack security is poorly examined. The results could be used as a base for dynamic analysis network traffic.
reinforcement learning, vulnerability scanning, cеÑевÑе аÑаки, обÑÑение Ñ Ð¿Ð¾Ð´ÐºÑеплением, иÑкÑÑÑÑвеннÑй инÑеллекÑ, network attacks, network traffic recognition, поиÑк ÑÑзвимоÑÑей, artificial intelligence, ÑаÑпознание ÑÑаÑика
reinforcement learning, vulnerability scanning, cеÑевÑе аÑаки, обÑÑение Ñ Ð¿Ð¾Ð´ÐºÑеплением, иÑкÑÑÑÑвеннÑй инÑеллекÑ, network attacks, network traffic recognition, поиÑк ÑÑзвимоÑÑей, artificial intelligence, ÑаÑпознание ÑÑаÑика
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |