
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>doi: 10.18653/v1/s16-1165
Clinical TempEval 2016 evaluated temporal information extraction systems on the clinical domain. Nine sub-tasks were included, covering problems in time expression identification, event expression identification and temporal relation identification. Participant systems were trained and evaluated on a corpus of clinical and pathology notes from the Mayo Clinic, annotated with an extension of TimeML for the clinical domain. 14 teams submitted a total of 40 system runs, with the best systems achieving near-human performance on identifying events and times. On identifying temporal relations, there was a gap between the best systems and human performance, but the gap was less than half the gap of Clinical TempEval 2015.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 136 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
