publication . Article . Preprint . 2021

Singularity-free and cosmologically viable Born-Infeld gravity with scalar matter

David Benisty; Gonzalo J. Olmo; Diego Rubiera-Garcia;
Open Access English
  • Published: 01 Nov 2021
  • Publisher: MDPI
The early Cosmology driven by a single scalar field, both massless and massive, in the context of Eddington-inspired Born-Infeld gravity, is explored. We show the existence of nonsingular solutions of bouncing and loitering type (depending on the sign of the gravitational theory's parameter, $\epsilon$) replacing the Big Bang singularity, and discuss their properties. In addition, in the massive case we find some new features of the cosmological evolution depending on the value of the mass parameter, including asymmetries in the expansion/contraction phases, or a continuous transition between a contracting phase to an expanding one via an intermediate loitering phase. We also provide a combined analysis of cosmic chronometers, standard candles, BAO, and CMB data to constrain the model, finding that for roughly $\vert \epsilon \vert \lesssim 5\cdot 10^{-8} \text{ m}^2$ the model is compatible with the latest observations while successfully removing the Big Bang singularity. This bound is several orders of magnitude stronger than the most stringent constraints currently available in the literature
Comment: 26 pages, 15 figures. v2: bounds on EiBI parameter significantly improved. Version accepted for publication
arXiv: Astrophysics::Cosmology and Extragalactic Astrophysics
free text keywords: Física-Modelos matemáticos, Física matemática, Física-Modelos matemáticos, Física matemática, metric-affine gravity, non-singular cosmologies, born-infeld gravity, observational constraints, scalar fields, Mathematics, QA1-939, General Relativity and Quantum Cosmology, metric-affine gravity, non-singular cosmologies, born-infeld gravity, observational constraints, scalar fields, Physics and Astronomy (miscellaneous), General Mathematics, Chemistry (miscellaneous), Computer Science (miscellaneous), Physics, Scalar (mathematics), Cosmic microwave background, Context (language use), Massless particle, Scalar field, Gravitation, Singularity, Cosmology, Theoretical physics
Funded by
FCT| PTDC/FIS-PAR/31938/2017
Probing cosmic stings and other topological defects with gravitational waves
  • Funder: Fundação para a Ciência e a Tecnologia, I.P. (FCT)
  • Project Code: PTDC/FIS-PAR/31938/2017
  • Funding stream: 9471 - RIDTI
84 references, page 1 of 6

[1] L. Amendola, et al. [Euclid Theory Working Group], Living Rev. Rel. 16 (2013) 6.

[2] N. Aghanim, et al. [Planck Collaboration], arXiv:1807.06209 [astro-ph.CO].

[3] A. A. Starobinsky, JETP Lett. 30 (1979) 682 [Pisma Zh. Eksp. Teor. Fiz. 30 (1979) 719].

[4] A. A. Starobinsky, Phys. Lett. 91B (1980) 99 [Adv. Ser. Astrophys. Cosmol. 3 (1987) 130].

[5] A. D. Linde, Phys. Lett. 108B (1982) 389 [Adv. Ser. Astrophys. Cosmol. 3 (1987) 149].

[6] A. H. Guth, Phys. Rev. D 23 (1981) 347 [Adv. Ser. Astrophys. Cosmol. 3 (1987) 139].

[7] A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48 (1982) 1220 [Adv. Ser. Astrophys. Cosmol. 3 (1987) 158].

[8] V. F. Mukhanov and G. V. Chibisov, JETP Lett. 33 (1981) 532 [Pisma Zh. Eksp. Teor. Fiz. 33 (1981) 549].

[9] A. H. Guth and S. Y. Pi, Phys. Rev. Lett. 49 (1982) 1110.

[10] J. D. Barrow, Nucl. Phys. B 296 (1988) 697.

[11] J. D. Barrow and S. Cotsakis, Phys. Lett. B 214 (1988) 515.

[12] E. Elizalde, S. Nojiri, S. D. Odintsov, D. Saez-Gomez and V. Faraoni, Phys. Rev. D 77 (2008) 106005.

[13] B. Ratra and P. J. E. Peebles, Phys. Rev. D 37 (1988) 3406.

[14] R. R. Caldwell, R. Dave and P. J. Steinhardt, Phys. Rev. Lett. 80 (1998) 1582.

[15] J. Kehayias and R. J. Scherrer, Phys. Rev. D 100 (2019) 023525.

84 references, page 1 of 6
Any information missing or wrong?Report an Issue