Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao MRS Bulletinarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
MRS Bulletin
Article . 1999 . Peer-reviewed
License: Cambridge Core User Agreement
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Membranes and Membrane Processes

Authors: Vasilis N. Burganos;

Membranes and Membrane Processes

Abstract

Membrane separation science has enjoyed tremendous progress since the first synthesis of membranes almost 40 years ago, which was driven by strong technological needs and commercial expectations. As a result, the range of successful applications of membranes and membrane processes is continuously broadening. An additional change lies in the nature of membranes, which is now extended to include liquid and gaseous materials, biological or synthetic. Membranes are understood to be thin barriers between two phases through which transport can take place under the action of a driving force, typically a pressure difference and generally a chemical or electrical potential difference.An attempt at functional classification of membranes would have to include diverse categories such as gas separation, pervaporation, reverse osmosis, micro- and ultrafiltration, and biomedical separations. The dominant application of membranes is certainly the separation of mixed phases or fluids, homogeneous or heterogeneous. Separation of a mixture can be achieved if the difference in the transport coefficients of the components of interest is sufficiently large. Membranes can also be used in applications other than separation targeting: They can be employed in catalytic reactors, energy storage and conversion systems, as key components of artificial organs, as supports for electrodes, or even to control the rate of release of both useful and dangerous species.In order to meet the requirements posed by the aforementioned applications, membranes must combine several structural and functional properties.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Top 10%
Average
Upload OA version
Are you the author? Do you have the OA version of this publication?