publication . Article . Journal . 2019

Algebraic analysis of two-level multigrid methods for edge elements

Artem Napov; Ronan Perrussel;
Open Access
  • Published: 13 Nov 2019 Journal: ETNA - Electronic Transactions on Numerical Analysis, volume 51, pages 387-411 (issn: 1068-9613, eissn: 1068-9613, Copyright policy)
  • Publisher: Osterreichische Akademie der Wissenschaften
Abstract
Copyright to this article is irrevocably assigned to the publishers for publication in Electronic Transactions on Numerical Analysis. The URL of the publishers for this work is http://etna.mcs.kent.edu/vol.51.2019/pp387-411.dir/pp387-411.pdf.; International audience; We present an algebraic analysis of two-level multigrid methods for the solution of linear systems arising from the discretization of the curl-curl boundary value problem with edge elements. The analysis is restricted to the singular compatible linear systems as obtained by setting to zero the contribution of the lowest order (mass) term in the associated partial differential equation. We use the an...
Persistent Identifiers
Subjects
free text keywords: Analysis, Analyse numérique, convergence analysis, multigrid, algebraic multigrid, two-level multigrid, Reitzinger-Schöberl multigrid, preconditioning, aggregation, edge elements,Mathematics, Physics and Space Research, convergence analysis, multigrid, algebraic multigrid, two-level multigrid, Reitzinger-Schöberl multigrid, preconditioning, aggregation, edge elements AMS subject classifications 65N55, 65N12, 65N22, 35Q60, [SPI.ELEC]Engineering Sciences [physics]/Electromagnetism, [INFO.INFO-NA]Computer Science [cs]/Numerical Analysis [cs.NA], [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation, [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA], Discretization, Partial differential equation, Algebraic analysis, Linear system, Boundary value problem, Rate of convergence, Bounded function, Multigrid method, Mathematics, Applied mathematics
30 references, page 1 of 2

[1] R. ALBANESE AND G. RUBINACCI, Integral formulation for 3D eddy-current computation using edge elements, IEE Proc. A, 137 (1998), pp. 457-462.

[2] D. N. ARNOLD, R. S. FALK, AND R. WINTHER, Multigrid in H(div) and H(curl), Numer. Math., 85 (2000), pp. 197-217.

[3] R. BECK, P. DEUFLHARD, R. HIPTMAIR, R. H. W. HOPPE, AND B. WOHLMUTH, Adaptive multilevel methods for edge element discretizations of Maxwell's equations, Surveys Math. Indust., 8 (1999), pp. 271-312. [OpenAIRE]

[4] R. BECK, Algebraic multigrid by components splitting for edge elements on simplicial triangulations, Tech. Report SC 99-40, ZIB, Berlin, December 1999.

[5] P. B. BOCHEV, C. J. GARASI, J. J. HU, A. C. ROBINSON, AND R. S. TUMINARO, An improved algebraic multigrid method for solving Maxwell's equations, SIAM J. Sci. Comput., 25 (2003), pp. 623-642.

[6] T. BOONEN, G. DELIÉGE, AND S. VANDEWALLE, On algebraic multigrid methods derived from partition of unity nodal prolongators, Numer. Linear Algebra Appl., 13 (2006), pp. 105-131.

[7] T. BOONEN, J. VAN LENT, AND S. VANDEWALLE, Local Fourier analysis of multigrid for the curl-curl equation, SIAM J. Sci. Comput., 30 (2008), pp. 1730-1755. [OpenAIRE]

[8] A. BOSSAVIT, Computational Electromagnetism, Academic Press, San Diego, 1998.

[9] A. BRANDT, Algebraic multigrid theory: the symmetric case, Appl. Math. Comput., 19 (1986), pp. 23-56.

[10] R. D. FALGOUT, P. S. VASSILEVSKI, AND L. T. ZIKATANOV, On two-grid convergence estimates, Numer. Linear Algebra Appl., 12 (2005), pp. 471-494.

[11] R. HIPTMAIR, Multigrid method for Maxwell's equations, SIAM J. Numer. Anal., 36 (1999), pp. 204-225.

[12] R. HIPTMAIR AND J. XU, Nodal auxiliary space preconditioning in H(curl) and H(div) spaces, SIAM J. Numer. Anal., 45 (2007), pp. 2483-2509. [OpenAIRE]

[13] J. J. HU, R. S. TUMINARO, P. B. BOCHEV, C. J. GARASI, AND A. C. ROBINSON, Toward an h-independent algebraic multigrid method for Maxwell's equations, SIAM J. Sci. Comput., 27 (2006), pp. 1669-1688.

[14] H. IGARASHI, On the property of the curl-curl matrix in finite element analysis with edge elements, IEEE Trans. Magnetics, 37 (2001), pp. 3129-3132.

[15] T. V. KOLEV AND P. S. VASSILEVSKI, Parallel auxiliary space AMG for H(curl) problems, J. Comput. Math., 27 (2009), pp. 604-623.

30 references, page 1 of 2
Any information missing or wrong?Report an Issue