publication . Article . Journal . 2019

Revisiting aggregation-based multigrid for edge elements

Ronan Perrussel; Artem Napov;
Open Access
  • Published: 10 May 2019 Journal: ETNA - Electronic Transactions on Numerical Analysis, volume 51, pages 118-134 (issn: 1068-9613, eissn: 1068-9613, Copyright policy)
  • Publisher: Osterreichische Akademie der Wissenschaften
Abstract
info:eu-repo/semantics/published
Persistent Identifiers
Subjects
free text keywords: Analysis, algebraic multigrid, edge elements, preconditioning, aggregation AMS subject classifications 65N12, 65N22, 65N55, [SPI.ELEC]Engineering Sciences [physics]/Electromagnetism, [INFO.INFO-NA]Computer Science [cs]/Numerical Analysis [cs.NA], [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation, [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA], algebraic multigrid, edge elements, preconditioning, aggregation,Mathematics, Physics and Space Research, Analyse numérique, Aggregation, Convergence (routing), Discretization, Boundary value problem, Solver, Multigrid method, Preconditioner, Applied mathematics, Mathematics
28 references, page 1 of 2

[1] D. N. ARNOLD, R. S. FALK, AND R. WINTHER, Multigrid in H( div) and H(curl), Numer. Math., 85 (2000), pp. 197-217.

[2] R. BECK, Algebraic multigrid by components splitting for edge elements on simplicial triangulations, Tech. Report SC 99-40, ZIB, Berlin, December 1999.

[3] R. BECK, P. DEUFLHARD, R. HIPTMAIR, R. HOPPE, AND B. WOHLMUTH, Adaptive multilevel methods for edge element discretizations of Maxwell's equations, Surveys Math. Indust., 8 (1999), pp. 271-312.

[4] P. B. BOCHEV, C. J. GARASI, J. J. HU, A. C. ROBINSON, AND R. S. TUMINARO, An improved algebraic multigrid method for solving Maxwell's equations, SIAM J. Sci. Comput., 25 (2003), pp. 623-642. [OpenAIRE]

[5] T. BOONEN, G. DELIÉGE, AND S. VANDEWALLE, On algebraic multigrid methods derived from partition of unity nodal prolongators, Numer. Linear Algebra Appl., 13 (2006), pp. 105-131. [OpenAIRE]

[6] A. BOSSAVIT, Computational Electromagnetism, Academic Press, San Diego, 1998.

[7] C. GEUZAINE AND J.-F. REMACLE, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, Internat. J. Numer. Methods Engrg., 79 (2009), pp. 1309-1331.

[8] W. HACKBUSCH, Multigrid Methods and Applications, Springer, Berlin, 1985.

[9] R. HIPTMAIR, Multigrid method for Maxwell's equations, SIAM J. Numer. Anal., 36 (1999), pp. 204-225.

[10] R. HIPTMAIR AND J. XU, Nodal auxiliary space preconditioning in H(div) and H(curl) spaces, SIAM J. Numer. Anal., 45 (2007), pp. 2483-2509. [OpenAIRE]

[11] J. J. HU, R. S. TUMINARO, P. B. BOCHEV, C. J. GARASI, AND A. C. ROBINSON, Toward an h-independent algebraic multigrid method for Maxwell's equations, SIAM J. Sci. Comput., 27 (2006), pp. 1669-1688. [OpenAIRE]

[12] J. JONES AND B. LEE, A multigrid method for variable coefficient Maxwell's equations, SIAM J. Sci. Comput., 27 (2006), pp. 1689-1708.

[13] T. V. KOLEV AND P. S. VASSILEVSKI, Some experience with a H1-based auxiliary space AMG for H(curl) problems, Tech. Report UCRL-TR-221841, LLNL, Livermore, 2006. [OpenAIRE]

[14] , Parallel auxiliary space AMG for H(curl) problems, J. Comput. Math., 27 (2009), pp. 604-623.

[15] A. NAPOV, Algebraic analysis of V-cycle multigrid and aggregation-based two-grid methods, PhD. Thesis, Service de Métrologie Nucléaire, Université Libre de Bruxelles, Brussels, Belgium, 2010. [OpenAIRE]

28 references, page 1 of 2
Any information missing or wrong?Report an Issue