publication . Article . Journal . Preprint . 2019

Multiple Hermite polynomials and simultaneous Gaussian quadrature

Walter Van Assche; Anton Vuerinckx;
Open Access
  • Published: 17 Jan 2019
  • Publisher: Kent State University Library
Abstract
Comment: 18 pages, 5 figures, 1 table
Persistent Identifiers
Subjects
free text keywords: multiple Hermite polynomials, simultaneous Gauss quadrature, zero distribution, quadrature coefficients,Mathematik, Mathematics - Classical Analysis and ODEs, 33C45, 41A55, 42C05, 65D32, Analysis, Gaussian quadrature, symbols.namesake, symbols, Hermite polynomials, Mathematics, Quadrature (mathematics), Rodrigues' rotation formula, Disjoint sets, Combinatorics, Orthogonality, Polynomial, Recurrence relation

[1] A. Angelesco, Sur l'approximation simultanee de plusieurs integrals de nies, C.R. Acad. Sci. Paris 167 (1918), 629{631.

[2] P. Bleher, A.B.J. Kuijlaars, Large n limit of Gaussian random matrices with external source. I, Comm. Math. Phys. 252 (2004), no. 1{3, 43{76.

[3] C.F. Borges, On a class of Gauss-like quadrature rules, Numer. Math. 67 (1994), no. 3, 271{288.

[4] J. Coussement, W. Van Assche, Gaussian quadrature for multiple orthogonal polynomials, J. Comput. Appl. Math. 178 (2005), no. 1{2, 131{145.

[5] U. Fidalgo Prieto, J. Illan, G. Lopez Lagomasino, Hermite-Pade approximation and simultaneous quadrature formulas, J. Approx. Theory 126 (2004), no. 2, 171{197.

[6] M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and its Applications 98, Cambridge University Press, 2005.

[7] E. Levin, D.S. Lubinsky, Orthogonal Polynomials for Exponential Weights, CMS Books in Mathematics, Springer, New York, 2001. [OpenAIRE]

[8] D.S. Lubinsky, W. Van Assche, Simultaneous Gaussian quadrature for Angelesco systems, Jaen J. Approx. 8 (2016), no. 2, 113{149.

[9] G. Milovanovic, M. Stanic, Construction of multiple orthogonal polynomials by discretized Stieltjes-Gautschi procedure and corresponding Gaussian quadratures, Facta Univ. Ser. Math. Inform. 18 (2003), 9{29.

[10] E.M. Nikishin, V.N. Sorokin, Rational Approximations and Orthogonality, Translations of Mathematical Monographs 92, Amer. Math. Soc., Providence RI,1991.

[11] E.B. Sa , V. Totik, Logarithmic Potentials with External Fields, Grundlehren der mathematischen Wissenschaften, vol. 316, Springer-Verlag, Berlin, 1997. [OpenAIRE]

[12] G. Szeg}o, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., vol 23, Amer. Math. Soc., Providence RI, 1939 (fourth edition 1975).

[13] W. Van Assche, Pade and Hermite-Pade approximation and orthogonality, Surv. Approx. Theory 2 (2006), 61{91. [OpenAIRE]

Any information missing or wrong?Report an Issue