Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Digitální knihovna V...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Digitální knihovna VUT
Conference object . 2021 . Peer-reviewed
https://doi.org/10.13164/eeict...
Article . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Utilization Of Convolutional Neural Networks For Segmentation Of Mouse Embryos Cartilaginous Tissue In Micro-Ct Data

Authors: Poláková, Veronika;

Utilization Of Convolutional Neural Networks For Segmentation Of Mouse Embryos Cartilaginous Tissue In Micro-Ct Data

Abstract

Automatic segmentation of the biological structures in micro-CT data is still a challengesince the object of interest (craniofacial cartilage in our case) is commonly not characterized by uniquevoxel intensity or sharp borders. In recent years, convolutional neural networks (CNNs) have becomeexceedingly popular in many areas of computer vision. Specifically, for biomedical image segmentationproblems, U-Net architecture is widely used. However, in case of micro-CT data, there isa question whether 3D CNN would not be more beneficial. This paper introduces CNN architecturebased on V-Net as well as the methodology for data preprocessing and postprocessing. The baselinearchitecture was further optimized using advanced techniques such as Atrous Spatial Pyramid Pooling(ASPP) module, Scaled Exponential Linear Unit (SELU) activation function, multi-output supervisionand Dense blocks. For network learning, modern approaches were used including learning ratewarmup or AdamW optimizer. Even though the 3D CNN do not outperform U-Net regarding the craniofacialcartilage segmentation, the optimization raises the median of Dice coefficient from 69.74 %to 80.01 %. Therefore, utilizing these advanced techniques is highly encouraged as they can be easilyadded to any U-Net-like architecture and may remarkably improve the results.

Country
Czech Republic
Related Organizations
Keywords

V-Net, micro-CT, cartilaginous tissue, image segmentation, CNN

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average