Downloads provided by UsageCounts
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Calcium phosphates have long been used as synthetic bone grafts. Recent studies have shown that the modulation of composition and textural properties, such as nano-, micro- and macro-porosity, is a powerful strategy to control and synchronize material resorption and bone formation. Biomimetic calcium phosphates, which closely mimic the composition and structure of bone mineral, can be produced using low-temperature processing routes, and offer the possibility to modulate the material properties to a larger extent than conventional high temperature sintering processes. Advanced technologies open up new possibilities in the design of bioceramics for bone regeneration; 3D-printing technologies, in combination with the development of hybrid materials with enhanced mechanical properties, supported by finite element modelling tools, are expected to enable the design and fabrication of mechanically competent patient-specific bone grafts. The association of ions, drugs and cells allows leveraging of the osteogenic potential of bioceramic scaffolds in compromised clinical situations, where the intrinsic bone regeneration potential is impaired. Cite this article: EFORT Open Rev 2018;3 DOI: 10.1302/2058-5241.3.170056
Àrees temàtiques de la UPC::Enginyeria biomèdica::Biomaterials, Calcium phosphate, Instructional Lecture: General Orthopaedics, bone graft, Bioceramics, :Enginyeria biomèdica::Biomaterials [Àrees temàtiques de la UPC], bone healing, Fosfat de calci, Biomedical materials, calcium phosphate
Àrees temàtiques de la UPC::Enginyeria biomèdica::Biomaterials, Calcium phosphate, Instructional Lecture: General Orthopaedics, bone graft, Bioceramics, :Enginyeria biomèdica::Biomaterials [Àrees temàtiques de la UPC], bone healing, Fosfat de calci, Biomedical materials, calcium phosphate
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 142 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
| views | 51 | |
| downloads | 47 |

Views provided by UsageCounts
Downloads provided by UsageCounts