
This note develops properties of quasi-efficient solutions and explores interrelationships to the classical concept of efficiency. In particular, a point is a quasi-efficient solution to a multiple objective mathematical program if and only if it is an optimal solution to a scalar maximum problem for some set of nonnegative weights on the objectives. This result is then used to characterize the set of quasi-efficient solutions as the union of efficient solutions to a multiple objective problem over all nonempty subsets of the objectives.
scalarization, efficient solutions, mathematical programming, multiple objectives, convex multiobjective programming, Sensitivity, stability, parametric optimization, weak efficient) solutions, quasi-efficient solutions
scalarization, efficient solutions, mathematical programming, multiple objectives, convex multiobjective programming, Sensitivity, stability, parametric optimization, weak efficient) solutions, quasi-efficient solutions
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 53 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
