
doi: 10.12691/tjant-2-6-1
The Fibonacci sequence is a source of many nice and interesting identities. A similar interpretation exists for Lucas sequence. The Fibonacci sequence, Lucas numbers and their generalization have many interesting properties and applications to almost every field. Fibonacci sequence is defined by the recurrence formula and F0=0, F1=1, where Fn is a nth number of sequence. The Lucas Sequence is defined by the recurrence formula and L0=2, L1=1, where Ln is a nth number of sequence. In this paper, Generalized Fibonacci-Lucas sequence is introduced and defined by the recurrence relation with B0 = 2b, B1 = s, where b and s are integers. We present some standard identities and determinant identities of generalized Fibonacci-Lucas sequences by Binet’s formula and other simple methods.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
