
In this paper, we investigate the existence of $\mu$-pseudo almost automorphic solutions to the semilinear integral equation $x(t)=\int_{-\infty}^{t}a(t-s)[Ax(s)+f(s,x(s))]\,ds$, $t\in\mathbf{R}$ in a Banach space $\mathbf{X}$, where $a\in L^{1}(\mathbf{R}_{+})$, $A$ is the generator of an integral resolvent family of linear bounded operators defined on the Banach space $\mathbf{X}$, and $f:\mathbf{R}\times\mathbf{X}\rightarrow\mathbf{X}$ is a $\mu$-pseudo almost automorphic function. The main results are proved by using integral resolvent families combined with the theory of $\mu$-pseudo almost automorphic functions.
34K14, fixed point, $\mu$-pseudo almost automorphic function, 34F05, semilinear integral equations, integral resolvent family, 60H10, 35B15
34K14, fixed point, $\mu$-pseudo almost automorphic function, 34F05, semilinear integral equations, integral resolvent family, 60H10, 35B15
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
