Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Neurologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Neurology
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neurology
Article . 2019 . Peer-reviewed
Data sources: Crossref
Neurology
Article . 2020
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Microstructural white matter changes preceding white matter hyperintensities in migraine

Authors: Arkink, E.B.; Palm-Meinders, I.H.; Koppen, H.; Milles, J.; Lew, B. van; Launer, L.J.; Hofman, P.A.M.; +4 Authors

Microstructural white matter changes preceding white matter hyperintensities in migraine

Abstract

We used magnetization transfer imaging to assess white matter tissue integrity in migraine, to explore whether white matter microstructure was more diffusely affected beyond visible white matter hyperintensities (WMHs), and to explore whether focal invisible microstructural changes precede visible focal WMHs in migraineurs.We included 137 migraineurs (79 with aura, 58 without aura) and 74 controls from the Cerebral Abnormalities in Migraine, an Epidemiological Risk Analysis (CAMERA) study, a longitudinal population-based study on structural brain lesions in migraine patients, who were scanned at baseline and at a 9-year follow-up. To assess microstructural brain tissue integrity, baseline magnetization transfer ratio (MTR) values were calculated for whole brain white matter. Baseline MTR values were determined for areas of normal-appearing white matter (NAWM) that had progressed into MRI-detectable WMHs at follow-up and compared to MTR values of contralateral NAWM.MTR values for whole brain white matter did not differ between migraineurs and controls. In migraineurs, but not in controls, NAWM that later progressed to WMHs at follow-up had lower mean MTR (mean [SD] 0.354 [0.009] vs 0.356 [0.008], p = 0.047) at baseline as compared to contralateral white matter.We did not find evidence for widespread microstructural white matter changes in migraineurs compared to controls. However, our findings suggest that a gradual or stepwise process might be responsible for evolution of focal invisible microstructural changes into focal migraine-related visible WMHs.

Country
Netherlands
Keywords

Adult, Male, ABNORMALITIES, BRAIN-TISSUE, Migraine Disorders, Leukoaraiosis, Brain, MAGNETIZATION-TRANSFER, Middle Aged, Magnetic Resonance Imaging, White Matter, HEADACHE, Risk Factors, Humans, Female, AURA, Follow-Up Studies

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
bronze