publication . Article . Other literature type . Preprint . 2021

The ESCRT-III isoforms CHMP2A and CHMP2B display different effects on membranes upon polymerization

Maryam Alqabandi; N. de Franceschi; Nolwenn Miguet; Sourav Maity; Marta Bally; Wouter H. Roos; Winfried Weissenhorn; Patricia Bassereau; Stéphanie Mangenot;
Open Access English
  • Published: 01 Dec 2021
Abstract
Abstract Background ESCRT-III proteins are involved in many membrane remodeling processes including multivesicular body biogenesis as first discovered in yeast. In humans, ESCRT-III CHMP2 exists as two isoforms, CHMP2A and CHMP2B, but their physical characteristics have not been compared yet. Results Here, we use a combination of techniques on biomimetic systems and purified proteins to study their affinity and effects on membranes. We establish that CHMP2B binding is enhanced in the presence of PI(4,5)P2 lipids. In contrast, CHMP2A does not display lipid specificity and requires CHMP3 for binding significantly to membranes. On the micrometer scale and at moder...
Subjects
free text keywords: Atomic force microscopy (AFM), Bottom up approach, Endosomal sorting complexes Required for Transport (ESCRT), Giant unilamellar vesicles (GUV), Lipid-protein interactions, Mechanical properties, Membrane, Micropipette, Reconstituted system, [SDV]Life Sciences [q-bio], Endosomal sorting complexes Required for Transport (ESCRT), Atomic force microscopy (AFM), Bottom up approach, Endosomal sorting complexes Required for Transport (ESCRT), Giant unilamellar vesicles (GUV), Lipid-protein interactions, Mechanical properties, Membrane, Micropipette, Reconstituted system, Neurology, Neurologi, Cell Biology, Developmental Biology, Plant Science, General Agricultural and Biological Sciences, General Biochemistry, Genetics and Molecular Biology, Physiology, Ecology, Evolution, Behavior and Systematics, Structural Biology, Biotechnology, Research Article, lcsh:Biology (General), lcsh:QH301-705.5, Pi, Micrometer scale, Polymerization, Yeast, Membrane, Chemistry, Gene isoform, Biophysics, ESCRT, Reticular connective tissue
Communities
  • Instruct-ERIC
Funded by
ANR| PSL
Project
PSL
Paris Sciences et Lettres
  • Funder: French National Research Agency (ANR) (ANR)
  • Project Code: ANR-10-IDEX-0001
,
EC| ESCRT model
Project
ESCRT model
A biophysical model for ESCRT-III mediated membrane scission
  • Funder: European Commission (EC)
  • Project Code: 751715
  • Funding stream: H2020 | MSCA-IF-EF-ST
,
ANR| ESCRTfission
Project
ESCRTfission
Mechanics of ESCRT-III catalyzed membrane fission
  • Funder: French National Research Agency (ANR) (ANR)
  • Project Code: ANR-14-CE09-0003
,
EC| INTERACT
Project
INTERACT
SCRUTINIZING VIRUS-CELL INTERACTIONS: FROM ENSEMBLE TO SINGLE-MOLECULE STUDIES
  • Funder: European Commission (EC)
  • Project Code: 751404
  • Funding stream: H2020 | MSCA-IF-EF-ST
,
ANR| CBH-EUR-GS
Project
CBH-EUR-GS
CBH-EUR-GS
  • Funder: French National Research Agency (ANR) (ANR)
  • Project Code: ANR-17-EURE-0003
89 references, page 1 of 6

1. Hurley JH. ESCRTs are everywhere. EMBO J. 2015;34:2398-407.

2. Henne WM, Stenmark H, Emr SD. Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harb Perspect Biol. 2013;5:a016766.

3. Scheffer LL, et al. Mechanism of Ca2+-triggered ESCRT assembly and regulation of cell membrane repair. Nat Commun. 2014;5:5646.

4. Loncle N, Agromayor M, Martin-Serrano J, Williams DW. An ESCRT module is required for neuron pruning. Sci Rep. 2015;5:8461.

5. Sadoul R, et al. The role of ESCRT during development and functioning of the nervous system. Semin Cell Dev Biol. 2018;74:40-9.

6. Olmos Y, Hodgson L, Mantell J, Verkade P, Carlton JG. ESCRT-III controls nuclear envelope reformation. Nature. 2015;522:236. [OpenAIRE]

7. Vietri M, et al. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature. 2015;522:231.

8. Scourfield EJ, Martin-Serrano J. Growing functions of the ESCRT machinery in cell biology and viral replication. Biochem Soc Trans. 2017;45:613-34.

9. Morita E, et al. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 2007;26:4215-27.

10. Weiss ER, Göttlinger H. The role of cellular factors in promoting HIV budding. J Mol Biol. 2011;410(4):525-33.

11. Leung KF, Dacks JB, Field MC. Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage. Traffic. 2008;9:1698-716.

12. Teis D, Saksena S, Emr SD. Ordered assembly of the ESCRT-III complex on endosomes is required to sequester cargo during MVB formation. Dev Cell. 2008;15(4):578-89.

13. Carlton JG, Agromayor M, Martin-Serrano J. Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release. Proc Natl Acad Sci U S A. 2008;105:10541-6.

14. Morita E, Sandrin V, McCullough J, Katsuyama A, Baci Hamilton I, Sundquist WI. ESCRT-III protein requirements for HIV-1 budding. Cell Host Microbe. 2011;9:235-42.

15. Carlton JG, Caballe A, Agromayor M, Kloc M, Martin-Serrano J. ESCRT-III governs the Aurora B-mediated abscission checkpoint through CHMP4C. Science. 2012;336:220-5. [OpenAIRE]

89 references, page 1 of 6
Any information missing or wrong?Report an Issue