Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The International Jo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
arXiv.org e-Print Archive
Other literature type . Preprint . 2020
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.48550/arxiv...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 10 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

learning from demonstration using products of experts applications to manipulation and task prioritization

Authors: Sylvain Calinon; Sylvain Calinon; Emmanuel Pignat; Emmanuel Pignat; João Silvério;

learning from demonstration using products of experts applications to manipulation and task prioritization

Abstract

Probability distributions are key components of many learning from demonstration (LfD) approaches, with the spaces chosen to represent tasks playing a central role. Although the robot configuration is defined by its joint angles, end-effector poses are often best explained within several task spaces. In many approaches, distributions within relevant task spaces are learned independently and only combined at the control level. This simplification implies several problems that are addressed in this work. We show that the fusion of models in different task spaces can be expressed as products of experts (PoE), where the probabilities of the models are multiplied and renormalized so that it becomes a proper distribution of joint angles. Multiple experiments are presented to show that learning the different models jointly in the PoE framework significantly improves the quality of the final model. The proposed approach particularly stands out when the robot has to learn hierarchical objectives that arise when a task requires the prioritization of several sub-tasks (e.g. in a humanoid robot, keeping balance has a higher priority than reaching for an object). Since training the model jointly usually relies on contrastive divergence, which requires costly approximations that can affect performance, we propose an alternative strategy using variational inference and mixture model approximations. In particular, we show that the proposed approach can be extended to PoE with a nullspace structure (PoENS), where the model is able to recover secondary tasks that are masked by the resolution of tasks of higher-importance.

Country
Switzerland
Keywords

FOS: Computer and information sciences, product of experts, Computer Science - Machine Learning, distributions, learning from demonstration, space, task prioritization, imitation, Machine Learning (cs.LG), Computer Science - Robotics, nullspace learning and control, approximation, Robotics (cs.RO)

Powered by OpenAIRE graph
Found an issue? Give us feedback