
doi: 10.1159/000095262
pmid: 17047363
It is well established that proteolytic processing of the β-amyloid precursor protein (APP) generates β-amyloid which plays a central role in the pathogenesis of Alzheimer’s disease. In contrast, the physiological role of APP and the question of whether a loss of these functions contributes to Alzheimer’s disease are still unclear. For a long time, the characterization of APP functions was markedly hampered by the high redundancy between APP and the related APP family members amyloid precursor-like proteins 1 and 2. The generation and analyses of combined gene deficiencies for APP and amyloid precursor-like proteins in mice finally marked the beginning of uncovering the in vivo roles of these proteins in mammals. In the current review, we summarize recent insights into the functions of the APP gene family from mice lacking one, two or all three family members.
Amyloid beta-Protein Precursor, Animals, Brain, Humans
Amyloid beta-Protein Precursor, Animals, Brain, Humans
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 61 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
