
doi: 10.1155/2015/205295
This paper presents an efficient iterative method originated from the family of Chebyshev’s operations for the solution of nonlinear problems. For this aim, the product operation matrix of integration is presented, and therefore the operation of derivative is developed by using Chebyshev wavelet functions of the first and second kind, initially. Later, Chebyshev’s iterative method is improved by approximation of the first and second derivatives. The analysis of convergence demonstrates that the method is at least fourth-order convergent. The effectiveness of the proposed scheme is numerically and practically evaluated. It is concluded that it requires the less number of iterations and lies on the best performance of the proposed method, especially for highly varying nonlinear problems.
T Technology (General), TA Engineering (General). Civil engineering (General)
T Technology (General), TA Engineering (General). Civil engineering (General)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
